Assessment of Neuroanatomical Endophenotypes of Autism Spectrum Disorder and Association With Characteristics of Individuals With Schizophrenia and the General Population

Carregando...
Imagem de Miniatura
Citações na Scopus
3
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
AMER MEDICAL ASSOC
Autores
HWANG, Gyujoon
WEN, Junhao
SOTARDI, Susan
BRODKIN, Edward S.
CHAND, Ganesh B.
DWYER, Dominic B.
ERUS, Guray
DOSHI, Jimit
SINGHAL, Pankhuri
SRINIVASAN, Dhivya
Citação
JAMA PSYCHIATRY, v.80, n.5, p.498-507, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
IMPORTANCE Autism spectrum disorder (ASD) is associated with significant clinical, neuroanatomical, and genetic heterogeneity that limits precision diagnostics and treatment. OBJECTIVE To assess distinct neuroanatomical dimensions of ASD using novel semisupervised machine learningmethods and to test whether the dimensions can serve as endophenotypes also in non-ASD populations. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study used imaging data from the publicly available Autism Brain Imaging Data Exchange (ABIDE) repositories as the discovery cohort. The ABIDE sample included individuals diagnosed with ASD aged between 16 and 64 years and age- and sex-match typically developing individuals. Validation cohorts included individuals with schizophrenia from the Psychosis Heterogeneity Evaluated via Dimensional Neuroimaging (PHENOM) consortium and individuals from the UK Biobank to represent the general population. The multisite discovery cohort included 16 internationally distributed imaging sites. Analyses were performed between March 2021 and March 2022. MAIN OUTCOMES AND MEASURES The trained semisupervised heterogeneity through discriminative analysis models were tested for reproducibility using extensive cross-validations. It was then applied to individuals from the PHENOM and the UK Biobank. It was hypothesized that neuroanatomical dimensions of ASD would display distinct clinical and genetic profiles and would be prominent also in non-ASD populations. RESULTS Heterogeneity through discriminative analysis models trained on T1-weighted brain magnetic resonance images of 307 individuals with ASD (mean [SD] age, 25.4 [9.8] years; 273 [88.9%] male) and 362 typically developing control individuals (mean [SD] age, 25.8 [8.9] years; 309 [85.4%] male) revealed that a 3-dimensional scheme was optimal to capture the ASD neuroanatomy. The first dimension (A1: aginglike) was associated with smaller brain volume, lower cognitive function, and aging-related genetic variants (FOXO3; Z = 4.65; P = 1.62 x 10(-6)). The second dimension (A2: schizophrenialike) was characterized by enlarged subcortical volumes, antipsychotic medication use (Cohen d = 0.65; false discovery rate-adjusted P =.048), partially overlapping genetic, neuroanatomical characteristics to schizophrenia (n = 307), and significant genetic heritability estimates in the general population (n = 14 786; mean [SD] h2, 0.71 [0.04]; P < 1 x 10(-4)). The third dimension (A3: typical ASD) was distinguished by enlarged cortical volumes, high nonverbal cognitive performance, and biological pathways implicating brain development and abnormal apoptosis (mean [SD] beta, 0.83 [0.02]; P = 4.22 x 10(-6)). CONCLUSIONS AND RELEVANCE This cross-sectional study discovered 3-dimensional endophenotypic representation that may elucidate the heterogeneous neurobiological underpinnings of ASD to support precision diagnostics. The significant correspondence between A2 and schizophrenia indicates a possibility of identifying common biological mechanisms across the 2 mental health diagnoses.
Palavras-chave
Referências
  1. Aglinskas A, 2022, SCIENCE, V376, P1070, DOI 10.1126/science.abm2461
  2. Aguet F, 2020, SCIENCE, V369, P1318, DOI 10.1126/science.aaz1776
  3. Altman N, 2017, NAT METHODS, V14, P545, DOI 10.1038/nmeth.4299
  4. Alvares GA, 2020, AUTISM, V24, P221, DOI 10.1177/1362361319852831
  5. American Psychiatric Association, 2013, DIAGN STAT MAN MENT
  6. Bastiaansen JA, 2011, BIOL PSYCHIAT, V69, P832, DOI 10.1016/j.biopsych.2010.11.007
  7. Bethlehem RAI, 2020, COMMUN BIOL, V3, DOI 10.1038/s42003-020-01212-9
  8. Bourgeron T, 2015, NAT REV NEUROSCI, V16, P551, DOI 10.1038/nrn3992
  9. BRIDGEPORT, BRIDGEPORT BRIDG KNO
  10. Bulik-Sullivan BK, 2015, NAT GENET, V47, P291, DOI 10.1038/ng.3211
  11. Buniello A, 2019, NUCLEIC ACIDS RES, V47, pD1005, DOI 10.1093/nar/gky1120
  12. Bycroft C, 2018, NATURE, V562, P203, DOI 10.1038/s41586-018-0579-z
  13. Chand GB, 2020, BRAIN, V143, P1027, DOI 10.1093/brain/awaa025
  14. Croen LA, 2015, AUTISM, V19, P814, DOI 10.1177/1362361315577517
  15. Davatzikos C, 2001, NEUROIMAGE, V14, P1361, DOI 10.1006/nimg.2001.0937
  16. de Leeuw CA, 2015, PLOS COMPUT BIOL, V11, DOI 10.1371/journal.pcbi.1004219
  17. De Rubeis S, 2014, NATURE, V515, P209, DOI 10.1038/nature13772
  18. Di Martino A, 2014, Mol Psychiatry, V19, P659, DOI 10.1038/mp.2013.78
  19. Di Martino A, 2017, SCI DATA, V4, DOI 10.1038/sdata.2017.10
  20. Diaz-Beltran L, 2017, BMC GENOMICS, V18, DOI 10.1186/s12864-017-3667-9
  21. Doshi J, 2016, NEUROIMAGE, V127, P186, DOI 10.1016/j.neuroimage.2015.11.073
  22. Ecker C, 2015, LANCET NEUROL, V14, P1121, DOI 10.1016/S1474-4422(15)00050-2
  23. Elliott ML, 2021, MOL PSYCHIATR, V26, P3829, DOI 10.1038/s41380-019-0626-7
  24. Fawns-Ritchie C, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0231627
  25. Feroe AG, 2021, JAMA PEDIATR, V175, P957, DOI 10.1001/jamapediatrics.2021.1329
  26. Flachsbart F, 2017, NAT COMMUN, V8, DOI 10.1038/s41467-017-02183-y
  27. Fortin JP, 2018, NEUROIMAGE, V167, P104, DOI 10.1016/j.neuroimage.2017.11.024
  28. Hazlett HC, 2017, NATURE, V542, P348, DOI 10.1038/nature21369
  29. Hong SJ, 2020, BIOL PSYCHIAT, V88, P111, DOI 10.1016/j.biopsych.2020.03.022
  30. HUBERT L, 1985, J CLASSIF, V2, P193, DOI 10.1007/BF01908075
  31. Hwang G, 2022, BIOL PSYCHIAT, V92, P606, DOI 10.1016/j.biopsych.2022.07.012
  32. Hwang G, 2022, BRAIN COMMUN, V4, DOI 10.1093/braincomms/fcac117
  33. Insel TR, 2014, AM J PSYCHIAT, V171, P395, DOI 10.1176/appi.ajp.2014.14020138
  34. Jeste SS, 2014, NAT REV NEUROL, V10, P74, DOI 10.1038/nrneurol.2013.278
  35. Lam M, 2019, NAT GENET, V51, P1670, DOI 10.1038/s41588-019-0512-x
  36. Lange N, 2015, AUTISM RES, V8, P82, DOI 10.1002/aur.1427
  37. Liberzon A, 2011, BIOINFORMATICS, V27, P1739, DOI 10.1093/bioinformatics/btr260
  38. Lord C, 2000, J AUTISM DEV DISORD, V30, P205, DOI 10.1023/A:1005592401947
  39. Lord C, 2020, NAT REV DIS PRIMERS, V6, DOI 10.1038/s41572-019-0138-4
  40. Marquand AF, 2019, MOL PSYCHIATR, V24, P1415, DOI 10.1038/s41380-019-0441-1
  41. Mitelman SA, 2017, BRAIN IMAGING BEHAV, V11, P1823, DOI 10.1007/s11682-016-9648-9
  42. Mottron L, 2020, MOL PSYCHIATR, V25, P3178, DOI 10.1038/s41380-020-0748-y
  43. Munson J, 2008, AM J MENT RETARD, V113, P439, DOI 10.1352/2008.113:439-452
  44. Nickel K, 2018, FRONT PSYCHIATRY, V9, DOI 10.3389/fpsyt.2018.00521
  45. Nomi JS, 2019, PROG NEURO-PSYCHOPH, V89, P412, DOI 10.1016/j.pnpbp.2018.10.015
  46. Purcell S, 2007, AM J HUM GENET, V81, P559, DOI 10.1086/519795
  47. Radonjic NV, 2021, MOL PSYCHIATR, V26, P2101, DOI 10.1038/s41380-020-01002-z
  48. Ruth KS, 2020, NAT MED, V26, P252, DOI 10.1038/s41591-020-0751-5
  49. Sandin S, 2017, JAMA-J AM MED ASSOC, V318, P1182, DOI 10.1001/jama.2017.12141
  50. Sodini SM, 2018, GENETICS, V209, P941, DOI 10.1534/genetics.117.300630
  51. St Pourcain B, 2018, MOL PSYCHIATR, V23, P263, DOI 10.1038/mp.2016.198
  52. Tang SY, 2020, BIOL PSYCHIAT, V87, P1071, DOI 10.1016/j.biopsych.2019.11.009
  53. van Rentergem JAA, 2021, CLIN PSYCHOL REV, V87, DOI 10.1016/j.cpr.2021.102033
  54. van Rooij D, 2018, AM J PSYCHIAT, V175, P359, DOI 10.1176/appi.ajp.2017.17010100
  55. Varol E, 2017, NEUROIMAGE, V145, P346, DOI 10.1016/j.neuroimage.2016.02.041
  56. Watanabe K, 2017, NAT COMMUN, V8, DOI 10.1038/s41467-017-01261-5
  57. Wechsler D, 1999, WECHSLER ABBREVIATED
  58. Wei HG, 2014, INT J DEV NEUROSCI, V36, P13, DOI 10.1016/j.ijdevneu.2014.04.004
  59. Wen J., BIORXIV, DOI 10.1101/2022.09.16.508329
  60. Wen J., 2022, MEDRXIV, DOI 10.1101/2022.07.20.22277727
  61. Wen JH, 2022, JAMA PSYCHIAT, V79, P464, DOI 10.1001/jamapsychiatry.2022.0020
  62. Wen JH, 2022, MED IMAGE ANAL, V75, DOI 10.1016/j.media.2021.102304
  63. Wolfers T, 2019, NEUROSCI BIOBEHAV R, V104, P240, DOI 10.1016/j.neubiorev.2019.07.010
  64. Yang J, 2016, P NATL ACAD SCI USA, V113, pE4579, DOI 10.1073/pnas.1602743113
  65. Yang ZJ, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-26703-z
  66. Zabihi M, 2020, TRANSL PSYCHIAT, V10, DOI 10.1038/s41398-020-01057-0
  67. Zeidan J, 2022, AUTISM RES, V15, P778, DOI 10.1002/aur.2696