Clinical and Genetic Characterization of Familial Central Precocious Puberty

Nenhuma Miniatura disponível
Citações na Scopus
5
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
ENDOCRINE SOC
Citação
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, v.108, n.7, p.1758-1767, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Context Central precocious puberty (CPP) can have a familial form in approximately one-quarter of the children. The recognition of this inherited condition increased after the identification of autosomal dominant CPP with paternal transmission caused by mutations in the MKRN3 and DLK1 genes. Objective We aimed to characterize the inheritance and estimate the prevalence of familial CPP in a large multiethnic cohort; to compare clinical and hormonal features, as well as treatment response to GnRH analogs (GnRHa), in children with distinct modes of transmission; and to investigate the genetic basis of familial CPP. Methods We retrospectively studied 586 children with a diagnosis of CPP. Patients with familial CPP (n = 276) were selected for clinical and genetic analysis. Data from previous studies were grouped, encompassing sequencing of MKRN3 and DLK1 genes in 204 patients. Large-scale parallel sequencing was performed in 48 individuals from 34 families. Results The prevalence of familial CPP was estimated at 22%, with a similar frequency of maternal and paternal transmission. Pedigree analyses of families with maternal transmission suggested an autosomal dominant inheritance. Clinical and hormonal features, as well as treatment response to GnRHa, were similar among patients with different forms of transmission of familial CPP. MKRN3 loss-of-function mutations were the most prevalent cause of familial CPP, followed by DLK1 loss-of-function mutations, affecting, respectively, 22% and 4% of the studied families; both affected exclusively families with paternal transmission. Rare variants of uncertain significance were identified in CPP families with maternal transmission. Conclusion We demonstrated a similar prevalence of familial CPP with maternal and paternal transmission. MKRN3 and DLK1 loss-of-function mutations were the major causes of familial CPP with paternal transmission.
Palavras-chave
familial central precocious puberty, autosomal inheritance, mode of transmission, genetic of puberty, MKRN3, DLK1
Referências
  1. Abreu AP, 2013, NEW ENGL J MED, V368, P2467, DOI 10.1056/NEJMoa1302160
  2. Barre L, 2007, FEBS J, V274, P1256, DOI 10.1111/j.1742-4658.2007.05670.x
  3. Bessa DS, 2018, CLIN EPIGENETICS, V10, DOI 10.1186/s13148-018-0581-1
  4. Brito VN, 2016, ARCH ENDOCRIN METAB, V60, P163, DOI 10.1590/2359-3997000000144
  5. Dauber A, 2017, J CLIN ENDOCR METAB, V102, P1557, DOI 10.1210/jc.2016-3677
  6. de Vries L, 2004, J CLIN ENDOCR METAB, V89, P1794, DOI 10.1210/jc.2003-030361
  7. Durand A, 2016, BMC ENDOCR DISORD, V16, DOI 10.1186/s12902-016-0130-x
  8. Fassler CS, 2019, J CLIN ENDOCR METAB, V104, P6079, DOI 10.1210/jc.2019-00889
  9. Games LG, 2019, J CLIN ENDOCR METAB, V104, P2112, DOI 10.1210/jc.2018-02010
  10. Harbulot C, 2021, EUR J ENDOCRINOL, V184, P243, DOI 10.1530/EJE-20-0862
  11. Hollis B, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-14451-5
  12. HOPWOOD NJ, 1981, AM J DIS CHILD, V135, P78, DOI 10.1001/archpedi.1981.02130250064020
  13. Kichaev G, 2019, AM J HUM GENET, V104, P65, DOI 10.1016/j.ajhg.2018.11.008
  14. Kurian JR, 2016, ENDOCRINOLOGY, V157, P3588, DOI 10.1210/en.2016-1087
  15. Latronico AC, 2016, LANCET DIABETES ENDO, V4, P265, DOI 10.1016/S2213-8587(15)00380-0
  16. Lerario AM, 2020, CLINICS, V75, DOI 10.6061/clinics/2020/e1913
  17. Li CY, 2020, NATL SCI REV, V7, P671, DOI 10.1093/nsr/nwaa023
  18. Lomniczi A, 2013, NAT NEUROSCI, V16, P281, DOI 10.1038/nn.3319
  19. Macedo DB, 2018, NEUROENDOCRINOLOGY, V107, P127, DOI 10.1159/000490059
  20. Macedo DB, 2014, J CLIN ENDOCR METAB, V99, pE1097, DOI 10.1210/jc.2013-3126
  21. Macedo DB, 2014, ARQ BRAS ENDOCRINOL, V58, P108, DOI 10.1590/0004-2730000002931
  22. Canton APM, 2021, HUM REPROD, V36, P506, DOI 10.1093/humrep/deaa306
  23. Canton APM, 2019, ARCH ENDOCRIN METAB, V63, P438, DOI 10.20945/2359-3997000000164
  24. MARSHALL WA, 1969, ARCH DIS CHILD, V44, P291, DOI 10.1136/adc.44.235.291
  25. MARSHALL WA, 1970, ARCH DIS CHILD, V45, P13, DOI 10.1136/adc.45.239.13
  26. Montenegro L, 2020, J CLIN ENDOCR METAB, V105, DOI 10.1210/clinem/dgaa461
  27. Naslavsky MS, 2022, NAT COMMUN, V13, DOI 10.1038/s41467-022-28648-3
  28. Naslavsky MS, 2017, HUM MUTAT, V38, P751, DOI 10.1002/humu.23220
  29. Perry JRB, 2014, NATURE, V514, P92, DOI 10.1038/nature13545
  30. Ramos CD, 2020, NEUROENDOCRINOLOGY, V110, P705, DOI 10.1159/000504446
  31. Richards S, 2015, GENET MED, V17, P405, DOI 10.1038/gim.2015.30
  32. ROHN R, 1986, AM J DIS CHILD, V140, P741, DOI 10.1001/archpedi.1986.02140220023017
  33. Rzeczkowska PA, 2014, NEUROENDOCRINOLOGY, V99, P139, DOI 10.1159/000362559
  34. SANGER F, 1977, P NATL ACAD SCI USA, V74, P5463, DOI 10.1073/pnas.74.12.5463
  35. Seraphim CE, 2021, J CLIN ENDOCR METAB, V106, P1041, DOI 10.1210/clinem/dgaa955
  36. Simon D, 2016, EUR J ENDOCRINOL, V174, P1, DOI 10.1530/EJE-15-0488
  37. Valadares LP, 2019, J ENDOCR SOC, V3, P979, DOI 10.1210/js.2019-00041
  38. Vasques GA, 2018, J CLIN ENDOCR METAB, V103, P604, DOI 10.1210/jc.2017-02026
  39. Yermachenko A, 2016, GENE, V590, P85, DOI 10.1016/j.gene.2016.06.015