Leveraging Clinical Informatics and Data Science to Improve Care and Facilitate Research in Pediatric Acute Respiratory Distress Syndrome: From the Second Pediatric Acute Lung Injury Consensus Conference

Carregando...
Imagem de Miniatura
Citações na Scopus
4
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
LIPPINCOTT WILLIAMS & WILKINS
Autores
SANCHEZ-PINTO, L. Nelson
SAUTHIER, Michael
RAJAPREYAR, Prakadeshwari
JOUVET, Philippe
NEWTH, Christopher
Citação
PEDIATRIC CRITICAL CARE MEDICINE, v.24, n.2, suppl.1, p.S1-S11, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
OBJECTIVES: The use of electronic algorithms, clinical decision support systems, and other clinical informatics interventions is increasing in critical care. Pediatric acute respiratory distress syndrome (PARDS) is a complex, dynamic condition associated with large amounts of clinical data and frequent decisions at the bedside. Novel data-driven technologies that can help screen, prompt, and support clinician decision-making could have a significant impact on patient outcomes. We sought to identify and summarize relevant evidence related to clinical informatics interventions in both PARDS and adult respiratory distress syndrome (ARDS), for the second Pediatric Acute Lung Injury Consensus Conference. DATA SOURCES: MEDLINE (Ovid), Embase (Elsevier), and CINAHL Complete (EBSCOhost). STUDY SELECTION: We included studies of pediatric or adult critically ill patients with or at risk of ARDS that examined automated screening tools, electronic algorithms, or clinical decision support systems. DATA EXTRACTION: Title/abstract review, full text review, and data extraction using a standardized data extraction form. DATA SYNTHESIS: The Grading of Recommendations Assessment, Development and Evaluation approach was used to identify and summarize evidence and develop recommendations. Twenty-six studies were identified for full text extraction to address the Patient/Intervention/Comparator/Outcome questions, and 14 were used for the recommendations/statements. Two clinical recommendations were generated, related to the use of electronic screening tools and automated monitoring of compliance with best practice guidelines. Two research statements were generated, related to the development of multicenter data collaborations and the design of generalizable algorithms and electronic tools. One policy statement was generated, related to the provision of material and human resources by healthcare organizations to empower clinicians to develop clinical informatics interventions to improve the care of patients with PARDS. CONCLUSIONS: We present two clinical recommendations and three statements (two research one policy) for the use of electronic algorithms and clinical informatics tools for patients with PARDS based on a systematic review of the literature and expert consensus.
Palavras-chave
clinical decision support, clinical informatics, data science, machine learning, pediatric acute respiratory distress syndrome
Referências
  1. Azzam HC, 2009, J AM MED INFORM ASSN, V16, P503, DOI 10.1197/jamia.M3120
  2. Bagga S, 2014, RESP CARE, V59, P1172, DOI 10.4187/respcare.02223
  3. Bates DW, 2003, NEW ENGL J MED, V348, P2526, DOI 10.1056/NEJMsa020847
  4. Bellani G, 2020, INTENS CARE MED, V46, P1180, DOI 10.1007/s00134-020-06035-0
  5. Blum JM, 2013, ANESTHESIOLOGY, V119, P295, DOI 10.1097/ALN.0b013e3182987af4
  6. Bourdeaux CP, 2016, BMJ OPEN, V6, DOI 10.1136/bmjopen-2015-010129
  7. Brant EB, 2022, NPJ DIGIT MED, V5, DOI 10.1038/s41746-022-00580-2
  8. Braunstein ML., 2022, HLTH INFORMATICS FHI, P293
  9. Castellanos I, 2018, J CRIT CARE, V43, P13, DOI 10.1016/j.jcrc.2017.06.027
  10. Cutillo CM, 2020, NPJ DIGIT MED, V3, DOI 10.1038/s41746-020-0254-2
  11. Dewan M, 2019, PEDIATR CRIT CARE ME, V20, P1197, DOI 10.1097/PCC.0000000000002147
  12. Ding XF, 2019, J TRANSL MED, V17, DOI 10.1186/s12967-019-2075-0
  13. Dziorny AC, 2022, PEDIATR CRIT CARE ME, V23, pE392, DOI 10.1097/PCC.0000000000002973
  14. East TD, 1999, J AM MED INFORM ASSN, P251
  15. Erickson SE, 2009, CRIT CARE MED, V37, P1, DOI 10.1097/CCM.0b013e31819292ea
  16. Eslami S, 2012, J CRIT CARE, V27, DOI 10.1016/j.jcrc.2011.07.082
  17. Eslami S, 2009, J CRIT CARE, V24, P523, DOI 10.1016/j.jcrc.2008.11.006
  18. Ferryman K, 2020, J AM MED INFORM ASSN, V27, P2016, DOI 10.1093/jamia/ocaa133
  19. Garcia PDW, 2021, J INTENSIVE CARE MED, V36, P1184, DOI 10.1177/08850666211024139
  20. Gordon WJ, 2020, J MED INTERNET RES, V22, DOI 10.2196/24824
  21. Henderson S., 1994, DECIS SUPPORT SYST, P224
  22. Herasevich V, 2011, CRIT CARE MED, V39, P34, DOI 10.1097/CCM.0b013e3181fa4184
  23. Herasevich V, 2009, INTENS CARE MED, V35, P1018, DOI 10.1007/s00134-009-1460-1
  24. Horak RV, 2019, CRIT CARE MED, V47, P1135, DOI 10.1097/CCM.0000000000003863
  25. Hotz JC, 2020, PEDIATR CRIT CARE ME, V21, P933, DOI 10.1097/PCC.0000000000002556
  26. Iyer N., 2023, PEDIATR CRIT CARE ME, V), pS76
  27. Johnson AEW, 2016, P IEEE, V104, P444, DOI 10.1109/JPROC.2015.2501978
  28. Khemani RG, 2019, LANCET RESP MED, V7, P115, DOI 10.1016/S2213-2600(18)30344-8
  29. Khemani RG, 2018, AM J RESP CRIT CARE, V198, P77, DOI 10.1164/rccm.201707-1404OC
  30. Khemani RG, 2015, INTENS CARE MED, V41, P94, DOI 10.1007/s00134-014-3486-2
  31. Koenig HC, 2011, CRIT CARE MED, V39, P98, DOI 10.1097/CCM.0b013e3181feb4a0
  32. Mayampurath A, 2020, CRIT CARE MED, V48, pE791, DOI 10.1097/CCM.0000000000004468
  33. McKinley BA, 2001, J TRAUMA, V50, P415, DOI 10.1097/00005373-200103000-00004
  34. Morris AH, 2021, J AM MED INFORM ASSN, V28, P1330, DOI 10.1093/jamia/ocaa294
  35. Newth CJL, 2020, RESP CARE, V65, P1601, DOI 10.4187/respcare.07810
  36. Newth CJL, 2017, PEDIATR CLIN N AM, V64, P1057, DOI 10.1016/j.pcl.2017.06.006
  37. Odetola FO, 2005, PEDIATRICS, V115, DOI 10.1542/peds.2004-1920
  38. Osheroff J.A., 2012, IMPROVING OUTCOMES C
  39. Rajapreyar P, 2022, J PEDIATR INTENSIVE, V11, P193, DOI 10.1055/s-0040-1721724
  40. Rimensberger PC, 2018, INTENS CARE MED, V44, P366, DOI 10.1007/s00134-017-4847-4
  41. Sanchez-Pinto LN, 2018, CHEST, V154, P1239, DOI 10.1016/j.chest.2018.04.037
  42. Taoum A, 2019, BIOMED SIGNAL PROCES, V50, P83, DOI 10.1016/j.bspc.2019.01.016
  43. Walsh BK, 2017, RESP CARE, V62, P268, DOI 10.4187/respcare.04873
  44. Zeiberg D, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0214465
  45. Zimmerman JJ, 2009, PEDIATRICS, V124, P87, DOI 10.1542/peds.2007-2462