What can Mendelian randomization contribute to biological anthropology?

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
HERRERA, Guadalupe
SANS, Monica
Citação
AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY, v.181, n.3, p.474-482, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Uncovering causal relationships between exposures and outcomes can be difficult in observational studies because of the potential for confounding and reverse causation to produce biased estimates. Conversely, randomized controlled trials (RCTs) provide the strongest evidence for causality but they are not always feasible. Mendelian randomization (MR) is a method that aims to strengthen causal inference using genetic variants as proxies or instrumental variables (IVs) for exposures, to overcome the above-mentioned biases. Since allele segregation occurs at random from parents to offspring, and alleles for a trait assort independently from those for other traits, MR studies have frequently been compared to ""natural"" RCTs. In biological anthropology (BA) relationships between variables of interest are usually evaluated using observational data, often remaining descriptive, and other approaches to causal inference have seldom been implemented. Here, we propose the use of MR to investigate cause and effect relationships in BA studies and provide examples to show how that can be done across areas of BA relevance, such as adaptation to the environment, nutrition and life history theory. While we consider MR a useful addition to the biological anthropologist's toolbox, we advocate the adoption of a wide range of methods, affected by different types of biases, in order to better answer the important causal questions for the discipline.
Palavras-chave
genetically informed studies, genome-wide association studies, instrumental variables, observational studies, single-nucleotide polymorphisms (SNPs)
Referências
  1. Abid Z, 2014, AM J CLIN NUTR, V100, p386S, DOI 10.3945/ajcn.113.071597
  2. Almon R, 2011, FOOD NUTR RES, V55, DOI 10.3402/fnr.v55i0.7253
  3. Angrist JD, 2001, J ECON PERSPECT, V15, P69, DOI 10.1257/jep.15.4.69
  4. Bahls M, 2021, CLIN RES CARDIOL, V110, P1564, DOI 10.1007/s00392-021-01846-7
  5. Batai K, 2021, PLOS GENET, V17, DOI 10.1371/journal.pgen.1009319
  6. Baumeister SE, 2020, NEUROLOGY, V95, pE1897, DOI 10.1212/WNL.0000000000010013
  7. Bonilla C, 2014, BMC PUBLIC HEALTH, V14, DOI 10.1186/1471-2458-14-597
  8. Burgess S, 2017, EPIDEMIOLOGY, V28, P30, DOI 10.1097/EDE.0000000000000559
  9. Cay M, 2022, AM J HUM BIOL, V34, DOI 10.1002/ajhb.23700
  10. Cinelli C, 2022, NAT COMMUN, V13, DOI 10.1038/s41467-022-28553-9
  11. Datta P, 2019, PHOTOCH PHOTOBIO SCI, V18, P448, DOI 10.1039/c8pp00320c
  12. Dufour DL, 2018, AM J PHYS ANTHROPOL, V165, P855, DOI 10.1002/ajpa.23370
  13. Eaton SB, 2003, COMP BIOCHEM PHYS A, V136, P153, DOI 10.1016/S1095-6433(03)00208-3
  14. Evershed RP, 2022, NATURE, V608, P336, DOI 10.1038/s41586-022-05010-7
  15. Fitzpatrick L. E., 2019, EXPLORATIONS OPEN IN, P516
  16. Gao SW, 2021, FRONT GENET, V12, DOI 10.3389/fgene.2021.758639
  17. Guenard F, 2017, NUTRIENTS, V9, DOI 10.3390/nu9070649
  18. Hammer GP, 2009, DTSCH ARZTEBL INT, V106, P664, DOI 10.3238/arztebl.2009.0664
  19. Harden KP, 2020, NAT HUM BEHAV, V4, P567, DOI 10.1038/s41562-020-0862-5
  20. Harold GT, 2017, CHILD DEV, V88, P446, DOI 10.1111/cdev.12742
  21. Hartwig FP, 2018, CLIN CHEM, V64, P4, DOI 10.1373/clinchem.2017.282673
  22. Hartwig FP, 2017, INT J EPIDEMIOL, V46, P1985, DOI 10.1093/ije/dyx102
  23. Haycock PC, 2016, AM J CLIN NUTR, V103, P965, DOI 10.3945/ajcn.115.118216
  24. Hemani G, 2018, ELIFE, V7, DOI 10.7554/eLife.34408
  25. HILL AB, 1965, P ROY SOC MED, V58, P295, DOI 10.1177/003591576505800503
  26. Hill J., 2015, INT ENCY SOCIAL BEHA, P255, DOI 10.1016/B978-0-08-097086-8.42095-7
  27. Ioannidis JPA, 2016, STAT MED, V35, P1749, DOI 10.1002/sim.6825
  28. Jablonski NG, 2000, J HUM EVOL, V39, P57, DOI 10.1006/jhev.2000.0403
  29. Jeong S, 2020, CURR HYPERTENS REP, V22, DOI 10.1007/s11906-020-01050-4
  30. Jones P, 2018, NUTRIENTS, V10, DOI 10.3390/nu10050554
  31. Kettunen J, 2010, HUM MOL GENET, V19, P1129, DOI 10.1093/hmg/ddp561
  32. Lawlor DA, 2016, INT J EPIDEMIOL, V45, P908, DOI 10.1093/ije/dyw127
  33. Lawlor Deborah, 2017, Wellcome Open Res, V2, P11, DOI 10.12688/wellcomeopenres.10567.1
  34. Lawn RB, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0234488
  35. Luca F, 2010, ANNU REV NUTR, V30, P291, DOI 10.1146/annurev-nutr-080508-141048
  36. Lucock MD, 2022, AM J HUM BIOL, V34, DOI 10.1002/ajhb.23667
  37. Malina R. M., 1991, APPLICATIONS BIOL AN, P143, DOI 10.1017/CBO9780511629129.006
  38. Mitchell BL, 2019, BEHAV GENET, V49, P386, DOI 10.1007/s10519-019-09954-x
  39. Morales E, 2011, BMJ OPEN, V1, DOI 10.1136/bmjopen-2011-000125
  40. Munafo MR, 2021, CSH PERSPECT MED, V11, DOI 10.1101/cshperspect.a040659
  41. van Oort S, 2020, AM HEART J, V227, P64, DOI 10.1016/j.ahj.2020.06.007
  42. Pingault JB, 2018, NAT REV GENET, V19, P566, DOI 10.1038/s41576-018-0020-3
  43. Pomeroy E, 2015, AM J PHYS ANTHROPOL, V156, P625, DOI 10.1002/ajpa.22680
  44. Popkin BM, 2006, AM J CLIN NUTR, V84, P289, DOI 10.1093/ajcn/84.2.289
  45. Raichlen DA, 2017, AM J HUM BIOL, V29, DOI 10.1002/ajhb.22919
  46. Rassen JA, 2009, J CLIN EPIDEMIOL, V62, P1233, DOI 10.1016/j.jclinepi.2008.12.006
  47. Riaz H, 2018, JAMA NETW OPEN, V1, DOI 10.1001/jamanetworkopen.2018.3788
  48. Schooling CM, 2019, SSM-POPUL HLTH, V8, DOI 10.1016/j.ssmph.2019.100411
  49. Smith GD, 2003, INT J EPIDEMIOL, V32, P1, DOI 10.1093/ije/dyg070
  50. Smith RJ, 2019, AM J PHYS ANTHROPOL, V169, P591, DOI 10.1002/ajpa.23862
  51. Soepnel LM, 2021, ANN HUM BIOL, V48, P81, DOI 10.1080/03014460.2021.1918245
  52. Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763
  53. Suzuki H, 2021, EUR J CLIN NUTR, V75, P937, DOI 10.1038/s41430-020-00823-z
  54. Swanson SA, 2017, EPIDEMIOLOGY, V28, P653, DOI 10.1097/EDE.0000000000000699
  55. Sykorova K, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-90579-8
  56. TABA N, 2021, J AM CHEM SOC, V12, DOI 10.3389/FGENE.2021.738265
  57. Teumer A, 2018, FRONT CARDIOVASC MED, V5, DOI 10.3389/fcvm.2018.00051
  58. VanderWeele TJ, 2014, EPIDEMIOLOGY, V25, P427, DOI 10.1097/EDE.0000000000000081
  59. Verbanck M, 2018, NAT GENET, V50, P693, DOI 10.1038/s41588-018-0099-7
  60. Vimaleswaran KS, 2021, INT J OBESITY, V45, P1751, DOI 10.1038/s41366-021-00841-2
  61. Wallace IJ, 2019, OSTEOARTHR CARTILAGE, V27, P1721, DOI 10.1016/j.joca.2019.07.005
  62. Wallace IJ, 2022, AMER J BIOL ANTHROPO, V177, P223, DOI 10.1002/ajpa.24429
  63. Wiley AS, 2010, AM J HUM BIOL, V22, P517, DOI 10.1002/ajhb.21042
  64. Wiley AS, 2005, AM J HUM BIOL, V17, P425, DOI 10.1002/ajhb.20411
  65. Wilson RT, 2011, HORM MOL BIOL CLIN I, V7, P279, DOI 10.1515/HMBCI.2011.021
  66. Wu PF, 2021, J SPORT HEALTH SCI, V10, P454, DOI 10.1016/j.jshs.2021.01.008
  67. Yang Q, 2017, EUR J CLIN NUTR, V71, P1008, DOI 10.1038/ejcn.2017.8
  68. Zanetti D, 2020, HYPERTENSION, V75, P714, DOI 10.1161/HYPERTENSIONAHA.119.14028
  69. ZHANG B, 2022, OPT LETT, V12, P12976, DOI 10.1038/S41598-022-17207-X
  70. Zhuang ZH, 2020, LIPIDS HEALTH DIS, V19, DOI 10.1186/s12944-020-01257-z
  71. Zhuo CG, 2021, FRONT CARDIOVASC MED, V8, DOI 10.3389/fcvm.2021.722154
  72. Zucoloto Fernando Sérgio, 2011, Psychol. Neurosci., V4, P131, DOI 10.3922/j.psns.2011.1.015