Brazilian Expert Consensus for NTRK Gene Fusion Testing in Solid Tumors

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
SAGE PUBLICATIONS LTD
Autores
MACEDO, Mariana Petaccia de
SOARES, Fernando Augusto
SANTINI, Fernando Costa
COSTA, Felipe D'Almeida
CUNHA, Isabela Werneck da
MUNHOZ, Rodrigo Ramella
MARCHI, Pedro De
JORGE, Thiago William Carnier
Citação
CLINICAL PATHOLOGY, v.16, article ID 2632010X231197080, 13p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Oncogenic neurotrophic tropomyosin receptor kinase gene fusions occur in less than 1% of common cancers. These mutations have emerged as new biomarkers in cancer genomic profiling with the approval of selective drugs against tropomyosin receptor kinase fusion proteins. Nevertheless, the optimal pathways and diagnostic platforms for this biomarker's screening and genomic profiling have not been defined and remain a subject of debate. A panel of national experts in molecular cancer diagnosis and treatment was convened by videoconference and suggested topics to be addressed in the literature review. The authors proposed a testing algorithm for oncogenic neurotrophic tropomyosin receptor kinase gene fusion screening and diagnosis for the Brazilian health system. This review aims to discuss the latest literature evidence and international consensus on neurotrophic tropomyosin receptor kinase gene fusion diagnosis to devise clinical guidelines for testing this biomarker. We propose an algorithm in which testing for this biomarker should be requested to diagnose advanced metastatic tumors without known driver mutations. In this strategy, Immunohistochemistry should be used as a screening test followed by confirmatory next-generation sequencing in immunohistochemistry-positive cases.
Palavras-chave
Precision medicine, molecular targeted therapy, biomarkers, high-throughput nucleotide sequencing
Referências
  1. Adashek JJ, 2021, TRENDS CANCER, V7, P15, DOI 10.1016/j.trecan.2020.08.009
  2. Awada A, 2022, CRIT REV ONCOL HEMAT, V169, DOI 10.1016/j.critrevonc.2021.103564
  3. Bebb DG, 2021, CURR ONCOL, V28, P523, DOI 10.3390/curroncol28010053
  4. Benayed R, 2019, CLIN CANCER RES, V25, P4712, DOI 10.1158/1078-0432.CCR-19-0225
  5. Bruno R, 2020, DIAGNOSTICS, V10, DOI 10.3390/diagnostics10080521
  6. Callens C, 2021, JNCI-J NATL CANCER I, V113, P917, DOI 10.1093/jnci/djaa193
  7. Cates JMM, 2015, APPL IMMUNOHISTO M M, V23, P471, DOI 10.1097/PAI.0000000000000111
  8. Cocco E, 2018, NAT REV CLIN ONCOL, V15, P731, DOI 10.1038/s41571-018-0113-0
  9. Conde E, 2021, ARCH PATHOL LAB MED, V145, P1031, DOI 10.5858/arpa.2020-0400-RA
  10. Coquerelle S, 2020, VALUE HEALTH, V23, P898, DOI 10.1016/j.jval.2020.03.005
  11. De Winne K, 2021, VIRCHOWS ARCH, V478, P283, DOI 10.1007/s00428-020-02921-6
  12. Fitzgibbons PL, 2014, ARCH PATHOL LAB MED, V138, P1432, DOI 10.5858/arpa.2013-0610-CP
  13. Gatalica Z, 2019, MODERN PATHOL, V32, P147, DOI 10.1038/s41379-018-0118-3
  14. Goodwin S, 2016, NAT REV GENET, V17, P333, DOI 10.1038/nrg.2016.49
  15. Harada G, 2020, CURR TREAT OPTION ON, V21, DOI 10.1007/s11864-020-00741-z
  16. Hechtman JF, 2022, MODERN PATHOL, V35, P298, DOI 10.1038/s41379-021-00913-8
  17. Hechtman JF, 2017, AM J SURG PATHOL, V41, P1547, DOI 10.1097/PAS.0000000000000911
  18. Hondelink LM, 2022, EUR J CANCER, V173, P229, DOI 10.1016/j.ejca.2022.06.030
  19. Hsiao SJ, 2019, J MOL DIAGN, V21, P553, DOI 10.1016/j.jmoldx.2019.03.008
  20. Illumina Inc, 2016, EV RNA QUAL FFPE SAM
  21. Jennings LJ, 2017, J MOL DIAGN, V19, P341, DOI 10.1016/j.jmoldx.2017.01.011
  22. Kobayashi Y, 2022, NATURE, V603, P335, DOI 10.1038/s41586-022-04451-4
  23. Lim KHT, 2022, ASIA-PAC J CLIN ONCO, V18, P394, DOI 10.1111/ajco.13727
  24. Litchfield K, 2020, CELL REP, V31, DOI 10.1016/j.celrep.2020.107550
  25. Low SK, 2022, TRANSL LUNG CANCER R, V11, P711, DOI 10.21037/tlcr-21-981
  26. Marchiò C, 2019, ANN ONCOL, V30, P1417, DOI 10.1093/annonc/mdz204
  27. Martin FJ., NUCLEIC ACIDS RES
  28. Matsubara T, 2020, BIOMED RES INT, V2020, DOI 10.1155/2020/9349132
  29. Milione M, 2017, ONCOTARGET, V8, P55353, DOI 10.18632/oncotarget.19512
  30. Miquelestorena-Standley E, 2020, MODERN PATHOL, V33, P1505, DOI 10.1038/s41379-020-0503-6
  31. Mosele F, 2020, ANN ONCOL, V31, P1491, DOI 10.1016/j.annonc.2020.07.014
  32. Mullard A, 2022, NAT REV DRUG DISCOV, V21, P548, DOI 10.1038/d41573-022-00117-y
  33. Nies M., 2021, J CLIN ENDOCR METAB, V106
  34. Okamura R, 2018, JCO PRECIS ONCOL, V2, DOI 10.1200/PO.18.00183
  35. Penault-Llorca F, 2019, J CLIN PATHOL, V72, P460, DOI 10.1136/jclinpath-2018-205679
  36. Perreault S, 2021, CURR ONCOL, V28, P346, DOI 10.3390/curroncol28010038
  37. Rojo Federico, 2021, Rev Esp Patol, V54, P250, DOI 10.1016/j.patol.2021.05.003
  38. Rosen EY, 2020, CLIN CANCER RES, V26, P1624, DOI 10.1158/1078-0432.CCR-19-3165
  39. Sociedade Brasileira de Patologia, 2020, MANUAL BOAS PRATICAS
  40. Solomon JP, 2020, MODERN PATHOL, V33, DOI 10.1038/s41379-019-0324-7
  41. Solomon JP, 2019, CANCER RES, V79, P3163, DOI 10.1158/0008-5472.CAN-19-0372
  42. Solomon JP., 2019, ANN ONCOL, V30
  43. Su YJ, 2022, APPL IMMUNOHISTO M M, V30, P264, DOI 10.1097/PAI.0000000000001003
  44. Subbiah V, 2022, LANCET ONCOL, V23, P1261, DOI 10.1016/S1470-2045(22)00541-1
  45. Tachon G, 2019, CANCER MED-US, V8, P7556, DOI 10.1002/cam4.2599
  46. Tatematsu T, 2014, MOL CLIN ONCOL, V2, P725, DOI 10.3892/mco.2014.318
  47. True LD, 2008, HISTOCHEM CELL BIOL, V130, P473, DOI 10.1007/s00418-008-0481-0
  48. Uhlen M., SCIENCE
  49. Ukkola I, 2022, VIRCHOWS ARCH, V480, P807, DOI 10.1007/s00428-022-03302-x
  50. Vendrell JA, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-12679-8
  51. von Ahlfen S, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0001261
  52. Wu G, 2014, NAT GENET, V46, P444, DOI 10.1038/ng.2938
  53. Xu B, 2020, HISTOPATHOLOGY, V76, P375, DOI 10.1111/his.13981
  54. Yoshino T, 2020, ANN ONCOL, V31, P861, DOI 10.1016/j.annonc.2020.03.299