Nuclear Medicine in Endocrine Disorders: Diagnosis and Therapy

Nenhuma Miniatura disponível
Citações na Scopus
1
Tipo de produção
book
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER INTERNATIONAL PUBLISHING
Autores
Citação
Coura-Filho, G. B.; de Campos, A. L. M.; de Oliveira, M. T. S. (eds). Nuclear Medicine in Endocrine Disorders: Diagnosis and TherapySPRINGER INTERNATIONAL PUBLISHING, 2022. 336p.
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
This book presents up-to-date information on the general principles of diagnostic and therapeutic nuclear medicine in the context of endocrinology. The content is divided into six parts. Section I examines general aspects of radiopharmaceuticals, scintigraphy, single-photon emission computed tomography (SPECT), positron emission tomography (PET), radionuclide therapies and radioguided surgery. Section II discusses diagnostic applications in benign thyroid diseases and evaluation of thyroid nodules. Section III gives an overview of the management of parathyroid diseases. Section IV presents diagnostic techniques in well-differentiated thyroid cancer. Section V addresses procedures and therapy in adrenal benign and malignant disorders (phaechromocytomas and paragangliomas). Lastly, the diagnosis and treatment of neuroendocrine tumors are featured in Section VI. Nuclear Medicine in Endocrine Disorders: Diagnosis and Therapy is intended for non-specialists in nuclear medicine working in the field of endocrinology, and is also a valuable resource for researchers and students. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022.
Palavras-chave
Endocrinology, Hyperthyroidism, Imaging, Neuroendocrine Tumors, Nuclear Medicine, Parathyroid, Thyroid Cancer
Referências
  1. Ziessman H.A., O'Malley J.P., Thrall J.H., Fahey F.H., Nuclear Medicine, (2014)
  2. Molavipordanjani S., Tolmachev V., Hosseinimehr S.J., Basic and practical concepts of radiopharmaceutical purification methods, Drug Discov Today, 24, 1, pp. 315-324, (2019)
  3. Vallabhajosula S., Killeen R.P., Osborne J.R., Altered biodistribution of radiopharmaceuticals: Role of radiochemical/pharmaceutical purity, physiological, and pharmacologic factors, Semin Nucl Med, 40, 4, pp. 220-241, (2019)
  4. Vermeulen K., Vandamme M., Bormans G., Cleeren F., Design and challenges of radiopharmaceuticals, Semin Nucl Med, 49, 5, pp. 339-356, (2019)
  5. Bushberg J.T., The Essential Physics of Medical Imaging, (2012)
  6. Sarko D., Eisenhut M., Haberkorn U., Mier W., Bifunctional chelators in the design and application of radiopharmaceuticals for oncological diseases, Curr Med Chem, 19, 17, pp. 2667-2688, (2012)
  7. Hironaka F.H., Ono C.R., Buchpiguel C.A., Sapienza M.T., Lima M.S., Medicina Nuclear Princípios E Aplicações, (2017)
  8. Ercan M.T., Caglar M., Therapeutic radiopharmaceuticals, Curr Pharm Des, 6, 11, pp. 1085-1121, (2000)
  9. Kharfi F., Principles and applications of nuclear medical imaging: A survey on recent developments, Imaging and Radioanalytical Techniques in Interdisciplinary Research - Fundamentals and Cutting Edge Applications [Internet], (2013)
  10. Ziessman H.A., O'Malley J.P., Thrall J.H., Fahey F.H., Nuclear Medicine, (2014)
  11. Bailey D.L., American Association of Physicists in Medicine, Editors. Nuclear Medicine Physics: A Handbook for Teachers and Students, (2014)
  12. Zanzonico P., Principles of nuclear medicine imaging: Planar, SPECT, PET, multi-modality, and autoradiography systems, Radiat Res, 177, 4, pp. 349-364, (2012)
  13. Brownell A.-L., Nikkinen P., Liewendahl K., The development of nuclear medicine imaging, Scand J Clin Lab Invest, 50, pp. 119-125, (1990)
  14. Wong K.K., Fig L.M., Youssef E., Ferretti A., Rubello D., Gross M.D., Endocrine scintigraphy with hybrid SPECT/CT, Endocr Rev, 35, 5, pp. 717-746, (2014)
  15. Basu S., Hess S., Nielsen Braad P.-E., Olsen B.B., Inglev S., Hoilund-Carlsen P.F., The basic principles of FDG-PET/CT imaging, PET Clin, 9, 4, pp. 355-370, (2014)
  16. Hironaka F.H., Ono C.R., Buchpiguel C.A., Sapienza M.T., Lima M.S., Edição, (2017)
  17. Ziessman H.A., O'Malley J.P., Thrall J.H., Fahey F.H., Nuclear Medicine, (2014)
  18. Bushberg J.T., The Essential Physics of Medical Imaging, (2012)
  19. Rahmim A., Lodge M.A., Karakatsanis N.A., Panin V.Y., Zhou Y., McMillan A., Et al., Dynamic whole-body PET imaging: Principles, potentials and applications, Eur J Nucl Med Mol Imaging, 46, 2, pp. 501-518, (2019)
  20. Townsend D., Physical principles and technology of clinical PET imaging, Ann Acad Med Singap, 33, 2, pp. 133-145, (2004)
  21. Zanzonico P., Principles of nuclear medicine imaging: Planar, SPECT, PET, multi-modality, and autoradiography systems, Radiat Res, 177, 4, pp. 349-364, (2012)
  22. Marsden P., Sutcliffe-Goulden J., Principles and technology of PET scanning, Nucl Med Commun, 21, 3, pp. 221-224, (2000)
  23. Spanoudaki V.C., Ziegler S.I., PET & SPECT instrumentation, Molecular Imaging I [Internet], pp. 53-74, (2008)
  24. Lameka K., Farwell M.D., Ichise M., Positron emission tomography, Handbook of Clinical Neurology [Internet], pp. 209-227, (2016)
  25. Mettler F.A., Essential of Nuclear Medicine and Molecular Imaging, (2018)
  26. Scatliff J.H., Morris P.J., From roentgen to magnetic resonance imaging: The history of medical imaging, N C Med J, 75, 2, pp. 111-113, (2014)
  27. Hertz S., Roberts A., Radioactive iodine in the study of thyroid physiology
  28. the use of radioactive iodine therapy in hyperthyroidism, J am Med Assoc, 131, pp. 81-86, (1946)
  29. Willegaignon J., Braga L.F.E.F., Sapienza M.T., Coura-Filho G.B., Cardona M.A.R., Alves C.E.R., Et al., Diagnostic reference level: An important tool for reducing radiation doses in adult and pediatric nuclear medicine procedures in Brazil, Nucl Med Commun, 37, 5, pp. 525-533, (2016)
  30. Donya M., Radford M., Elguindy A., Firmin D., Yacoub M.H., Radiation in medicine: Origins, risks and aspirations, Glob Cardiol Sci Pract, 2014, 4, (2014)
  31. Pearce E.N., Braverman L.E., Hyperthyroidism: Advantages and disadvantages of medical therapy, Surg Clin North Am, 84, 3, pp. 833-847, (2004)
  32. Weaver T.E., Novel aspects of CPAP treatment and interventions to improve CPAP adherence, J Clin Med, 8, 12, (2019)
  33. Bacher K., Thierens H.M., Accurate dosimetry: An essential step towards good clinical practice in nuclear medicine, Nucl Med Commun, 26, 7, pp. 581-586, (2005)
  34. Navalkissoor S., Grossman A., Targeted alpha particle therapy for neuroendocrine Tumours: The next generation of peptide receptor radionuclide therapy, Neuroendocrinology, 108, 3, pp. 256-264, (2019)
  35. Sgouros G., Bodei L., McDevitt M.R., Nedrow J.R., Radiopharmaceutical therapy in cancer: Clinical advances and challenges, Nat Rev Drug Discov, 19, 9, pp. 589-608, (2020)
  36. Marcu L., Bezak E., Allen B.J., Global comparison of targeted alpha vs targeted beta therapy for cancer: In vitro, in vivo and clinical trials, Crit Rev Oncol Hematol, 123, pp. 7-20, (2018)
  37. Maier P., Hartmann L., Wenz F., Herskind C., Cellular pathways in response to ionizing radiation and their targetability for tumor radiosensitization, Int J Mol Sci, 17, 1, (2016)
  38. Roobol S.J., Van den Bent I., van Cappellen W.A., Abraham T.E., Paul M.W., Kanaar R., Et al., Comparison of high- and low-LET radiation-induced DNA double-strand break processing in living cells, Int J Mol Sci, 21, 18, (2020)
  39. Bolus N.E., Basic review of radiation biology and terminology, J Nucl Med Technol, 45, 4, pp. 259-264, (2017)
  40. Willers H., Held K.D., Introduction to clinical radiation biology, Hematol Oncol Clin North Am, 20, 1, pp. 1-24, (2006)
  41. Behr T.M., Behe M., Stabin M.G., Wehrmann E., Apostolidis C., Molinet R., Et al., High-linear energy transfer (LET) alpha versus low-LET beta emitters in radioimmunotherapy of solid tumors: Therapeutic efficacy and dose-limiting toxicity of 213Bi- versus 90Y-labeled CO17-1A Fab' fragments in a human colonic cancer model, Cancer Res, 59, 11, pp. 2635-2643, (1999)
  42. Chan H.S., de Blois E., Morgenstern A., Bruchertseifer F., de Jong M., Breeman W., Et al., In vitro comparison of 213Bi- and 177Lu-radiation for peptide receptor radionuclide therapy, Plos One, 12, 7, (2017)
  43. Malamitsi J.V., Koutsikos J.T., Giourgouli S.I., Zachaki S.F., Pipikos T.A., Vlachou F.J., Et al., I-131 Postablation SPECT/CT predicts relapse of papillary thyroid carcinoma more accurately than whole body scan, In Vivo, 33, 6, pp. 2255-2263, (2019)
  44. Konishi K., Ishiba R., Ikenohira T., Asao T., Hirata M., Ohira K., Et al., The relationship between the quantitative evaluation of thyroid bed uptake and the disappearance of accumulation in adjuvant radioactive iodine therapy for differentiated thyroid cancer, Ann Nucl Med, 35, 2, pp. 159-166, (2021)
  45. Ito S., Iwano S., Kato K., Naganawa S., Predictive factors for the outcomes of initial I-131 low-dose ablation therapy to Japanese patients with differentiated thyroid cancer, Ann Nucl Med, 32, 6, pp. 418-424, (2018)
  46. Hassan F.U., Mohan H.K., Clinical utility of SPECT/CT imaging post-radioiodine therapy: Does it enhance patient management in thyroid cancer?, Eur Thyroid J, 4, 4, pp. 239-245, (2015)
  47. Kumar P., Bal C., Damle N.A., Ballal S., Dwivedi S.N., Agarwala S., Lesion-wise comparison of pre-therapy and post-therapy effective half-life of iodine-131 in pediatric and young adult patients with differentiated thyroid cancer undergoing radioiodine therapy, Nucl Med Mol Imaging, 53, 3, pp. 199-207, (2019)
  48. Iwano S., Ito S., Kamiya S., Ito R., Kato K., Naganawa S., Unexpected radioactive iodine accumulation on whole-body scan after I-131 ablation therapy for differentiated thyroid cancer, Nagoya J Med Sci, 82, 2, pp. 205-215, (2020)
  49. Yang F., Cao L., Zhang C., An unusual false-positive uptake of radioiodine caused by pulmonary vasculature: The usefulness of SPECT/CT, Hell J Nucl Med, 23, 2, pp. 204-205, (2020)
  50. Mattsson S., Patient dosimetry in nuclear medicine, Radiat Prot Dosim, 165, 1-4, pp. 416-423, (2015)
  51. Spielmann V., Li W.B., Zankl M., Finding sensitive parameters in internal dose calculations for radiopharmaceuticals commonly used in clinical nuclear medicine, Radiat Environ Biophys, 57, 3, pp. 277-284, (2018)
  52. Willegaignon J., Pelissoni R.A., Lima B.C.G.D., Sapienza M.T., Coura-Filho G.B., Buchpiguel C.A., Prediction of iodine-131 biokinetics and radiation doses from therapy on the basis of tracer studies: An important question for therapy planning in nuclear medicine, Nucl Med Commun, 37, 5, pp. 473-479, (2016)
  53. Dewaraja Y.K., Frey E.C., Sgouros G., Brill A.B., Roberson P., Zanzonico P.B., Et al., MIRD pamphlet no. 23: Quantitative SPECT for patient-specific 3-dimensional dosimetry in internal radionuclide therapy, J Nucl Med, 53, 8, pp. 1310-1325, (2012)
  54. Stabin M., Xu X.G., Basic principles in the radiation dosimetry of nuclear medicine, Semin Nucl Med, 44, 3, pp. 162-171, (2014)
  55. Vieira Lde O., Kubo R., Sapienza M.T., Willegaignon J., Chammas M.C., Coura-Filho G.B., Et al., Correlation between thyroid volume determined either by ultrasound or by scintigraphy and its implications in dosimetric radioiodine calculations in Graves disease treatment, Arq Bras Endocrinol Metabol, 55, 9, pp. 696-700, (2011)
  56. Willegaignon J., Sapienza M.T., Coura Filho G.B., Traino A.C., Buchpiguel C.A., Determining thyroid (131)I effective half-life for the treatment planning of Graves' disease, Med Phys, 40, 2, (2013)
  57. Willegaignon J., Pelissoni R.A., de Godoy Diniz Lima B.C., Sapienza M.T., Coura-Filho G.B., Queiroz M.A., Et al., Estimating (131)I biokinetics and radiation doses to the red marrow and whole body in thyroid cancer patients: Probe detection versus image quantification, Radiol Bras, 49, 3, pp. 150-157, (2016)
  58. Seidlin S.M., Marinelli L.D., Oshry E., Radioactive iodine therapy
  59. effect on functioning metastases of adenocarcinoma of the thyroid, J am Med Assoc, 132, 14, pp. 838-847, (1946)
  60. Noto R.B., Pryma D.A., Jensen J., Lin T., Stambler N., Strack T., Et al., Phase 1 study of high-specific-activity I-131 MIBG for metastatic and/or recurrent pheochromocytoma or paraganglioma, J Clin Endocrinol Metab, 103, 1, pp. 213-220, (2018)
  61. Pryma D.A., Chin B.B., Noto R.B., Dillon J.S., Perkins S., Solnes L., Et al., Efficacy and safety of high-specific-activity 131I-MIBG therapy in patients with advanced pheochromocytoma or paraganglioma, J Nucl Med, 60, 5, pp. 623-630, (2019)
  62. Lamberts S.W.J., Hofland L.J., van Koetsveld P.M., Reubi J.-C., Bruining H.A., Barker W.H., Et al., Parallel in vivo and in vitro detection of functional somatostatin receptors in human endocrine pancreatic tumors: Consequences with regard to diagnosis, localization, and therapy, J Clin Endocrinol Metab, 71, 3, pp. 566-574, (1990)
  63. Krenning E.P., Bakker W.H., Kooij P.P., Breeman W.A., Oei H.Y., de Jong M., Et al., Somatostatin receptor scintigraphy with indium-111-DTPA-D-Phe-1-octreotide in man: Metabolism, dosimetry and comparison with iodine-123-Tyr-3-octreotide, J Nucl Med, 33, 5, pp. 652-658, (1992)
  64. Valkema R., de Jong M., Bakker W.H., Breeman W.A.P., Kooij P.P.M., Lugtenburg P.J., Et al., Phase I study of peptide receptor radionuclide therapy with [111In-DTPA0]octreotide: The Rotterdam experience, Semin Nucl Med, 32, 2, pp. 110-122, (2002)
  65. Filippi L., Chiaravalloti A., Schillaci O., Cianni R., Bagni O., Theranostic approaches in nuclear medicine: Current status and future prospects, Expert Rev Med Devices, 17, 4, pp. 331-343, (2020)
  66. Mariani G., Gulec S.A., Rubello D., Boni G., Puccini M., Pelizzo M.R., Et al., Preoperative localization and radioguided parathyroid surgery, J Nucl Med, 44, 9, pp. 1443-1458, (2003)
  67. Martinez D.A., King D.R., Romshe C., Lozano R.A., Morris J.D., O'Dorisio M.S., Et al., Intraoperative identification of parathyroid gland pathology: A new approach, J Pediatr Surg, 30, 9, pp. 1306-1309, (1995)
  68. Desiato V., Melis M., Amato B., Bianco T., Rocca A., Amato M., Et al., Minimally invasive radioguided parathyroid surgery: A literature review, Int J Surg, 28, pp. S84-S93, (2016)
  69. Huang Z., Lou C., 99mTcO4-/99mTc-MIBI dual-tracer scintigraphy for preoperative localization of parathyroid adenomas, J Int Med Res, 47, 2, pp. 836-845, (2019)
  70. Chen J., Wang J., Radioguided parathyroidectomy in patients with secondary hyperparathyroidism due to chronic renal failure, Nucl Med Commun, 35, 4, pp. 391-397, (2014)
  71. Ozdemir E., Genc M., Aydos U., Polat S.B., Kandemir Z., Tam A.A., Et al., Comparison of 99mTc-MIBI planar scintigraphy, SPET/CT and ultrasonography in detection of parathyroid adenoma in patients with primary hyperparathyroidism, Hell J Nucl Med, 23, 1, pp. 21-26, (2020)
  72. Acar N., Haciyanli M., Coskun M., Erdogan N., Celik S., Haciyanli S., Et al., Diagnostic value of four-dimensional computed tomography and four-dimensional magnetic resonance imaging in primary hyperparathyroidism when first-line imaging was inadequate, Ann R Coll Surg Engl, 102, 4, pp. 294-299, (2020)
  73. Norman J., Chheda H., Minimally invasive parathyroidectomy facilitated by intraoperative nuclear mapping, Surgery, 122, 6, pp. 998-1004, (1997)
  74. Flynn M.B., Bumpous J.M., Schill K., McMasters K.M., Minimally invasive radioguided parathyroidectomy11No competing interests declared, J am Coll Surg, 191, 1, pp. 24-31, (2000)
  75. Urkan M., Peker Y.S., Ozturk E., Minimally invasive parathyroidectomy for primary hyperparathyroidism, Acta Endocrinol (Buchar), 15, 2, pp. 182-186, (2019)
  76. Zandieh S., Muin D., Bernt R., Hittmair K., Haller J., Hergan K., Characteristics of incidentally found thyroid nodules in computed tomography: Comparison with thyroid scintigraphy, BMC Med Imaging, 17, 1, (2017)
  77. Freesmeyer M., Winkens T., Kuhnel C., Opfermann T., Seifert P., Technetium-99m SPECT/US hybrid imaging compared with conventional diagnostic thyroid imaging with scintigraphy and ultrasound, Ultrasound Med Biol, 45, 5, pp. 1243-1252, (2019)
  78. Rosario P.W., Rocha T.G., Mourao G.F., Calsolari M.R., Is radioiodine scintigraphy still of value in thyroid nodules with indeterminate cytology?: A prospective study in an iodine-sufficient area, Nucl Med Commun, 39, 11, pp. 1059-1060, (2018)
  79. Dobrenic M., Huic D., Zuvic M., Grosev D., Petrovic R., Samardzic T., Usefulness of low iodine diet in managing patients with differentiated thyroid cancer - initial results, Radiol Oncol, 45, 3, pp. 189-195, (2011)
  80. Giovanella L., Avram A.M., Iakovou I., Kwak J., Lawson S.A., Lulaj E., Et al., EANM practice guideline/SNMMI procedure standard for RAIU and thyroid scintigraphy, Eur J Nucl Med Mol Imaging, 46, 12, pp. 2514-2525, (2019)
  81. Iakovou I., Giannoula E., Sachpekidis C., Imaging and imaging-based management of pediatric thyroid nodules, J Clin Med, 9, 2, (2020)
  82. Moreno-Reyes R., Kyrilli A., Lytrivi M., Bourmorck C., Chami R., Corvilain B., Is there still a role for thyroid scintigraphy in the workup of a thyroid nodule in the era of fine needle aspiration cytology and molecular testing?, F1000res, 27, 5, (2016)
  83. Czepczynski R., Nuclear medicine in the diagnosis of benign thyroid diseases, Nucl Med Rev Cent East Eur, 15, 2, pp. 113-119, (2012)
  84. Intenzo C.M., Dam H.Q., Manzone T.A., Kim S.M., Imaging of the thyroid in benign and malignant disease, Semin Nucl Med, 42, 1, pp. 49-61, (2012)
  85. Sergieva S., Dimcheva M., Robev B., SPECT-CT in diagnosis of thyroid nodularity and retrosternal goiter, J Nucl Med, 55, (2014)
  86. Paschou S.Alpha., Vryonidou A., Goulis D.G., Thyroid nodules: α guide to assessment, treatment and follow-up, Maturitas, 96, pp. 1-9, (2017)
  87. Cooper D.S., Doherty G.M., Haugen B.R., Kloos R.T., Lee S.L., Mandel S.J., Et al., Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association (ATA) guidelines taskforce on thyroid nodules and differentiated thyroid cancer, Thyroid, 19, 11, pp. 1167-1214, (2009)
  88. Iakovou I., Giannoula E., Sachpekidis C., Imaging and imaging-based management of pediatric thyroid nodules, J Clin Med, 9, 2, (2020)
  89. Moreno-Reyes R., Kyrilli A., Lytrivi M., Bourmorck C., Chami R., Corvilain B., Is there still a role for thyroid scintigraphy in the workup of a thyroid nodule in the era of fine needle aspiration cytology and molecular testing?, F1000research, 5, (2016)
  90. Pirola I., Di Lodovico E., Casella C., Pezzaioli L., Facondo P., Ferlin A., Et al., Thyroid scintigraphy in the era of fine-needle aspiration cytology, Clin Endocrinol, 94, 4, pp. 711-716, (2021)
  91. Fernandez-Garcia J.C., Mancha-Doblas I., Ortega-Jimenez M.V., Ruiz-Escalante J.F., Castells-Fuste I., Tofe-Povedano S., Et al., Estructura diagnóstica y funcional de una consulta de alta resolución de nódulo tiroideo, Endocrinol Nutr, 61, 6, pp. 329-334, (2014)
  92. Zandieh S., Muin D., Bernt R., Hittmair K., Haller J., Hergan K., Characteristics of incidentally found thyroid nodules in computed tomography: Comparison with thyroid scintigraphy, BMC Med Imaging, 17, 1, (2017)
  93. Wong R., Farrell S.G., Grossmann M., Thyroid nodules: Diagnosis and management, Med J Aust, 209, 2, pp. 92-98, (2018)
  94. Czepczynski R., Nuclear medicine in the diagnosis of benign thyroid diseases, Nucl Med Rev Cent East Eur, 15, 2, pp. 113-119, (2012)
  95. Rosario P.W., Salles D.S., Bessa B., Purisch S., Contribution of scintigraphy and ultrasonography to the prediction of malignancy in thyroid nodules with indeterminate cytology, Arq Bras Endocrinol Metabol, 54, 1, pp. 56-59, (2010)
  96. Qian Z.J., Jin M.C., Meister K.D., Megwalu U.C., Pediatric thyroid cancer incidence and mortality trends in the United States, 1973-2013, JAMA Otolaryngol Neck Surg, 145, 7, (2019)
  97. Corrias A., Diagnostic features of thyroid nodules in pediatrics, Arch Pediatr Adolesc Med, 164, 8, (2010)
  98. Freesmeyer M., Winkens T., Kuhnel C., Opfermann T., Seifert P., Technetium-99m SPECT/US hybrid imaging compared with conventional diagnostic thyroid imaging with scintigraphy and ultrasound, Ultrasound Med Biol, 45, 5, pp. 1243-1252, (2019)
  99. Giovanella L., Avram A.M., Iakovou I., Kwak J., Lawson S.A., Lulaj E., Et al., EANM practice guideline/SNMMI procedure standard for RAIU and thyroid scintigraphy, Eur J Nucl Med Mol Imaging, 46, 12, pp. 2514-2525, (2019)
  100. de Marqui Moraes P.H., Sigrist R., Takahashi M.S., Schelini M., Chammas M.C., Ultrasound elastography in the evaluation of thyroid nodules: Evolution of a promising diagnostic tool for predicting the risk of malignancy, Radiol Bras, 52, 4, pp. 247-253, (2019)
  101. Rosario P.W., Rocha T.G., Mourao G.F., Calsolari M.R., Is radioiodine scintigraphy still of value in thyroid nodules with indeterminate cytology?: A prospective study in an iodine-sufficient area, Nucl Med Commun, 39, 11, pp. 1059-1060, (2018)
  102. Bapat R.D., Pai P., Shah S., Bhandarkar S.D., Surgery for thyroid goiter in western India. A prospective analysis of 334 cases, J Postgrad Med, 39, 4, pp. 202-204, (1993)
  103. Intenzo C.M., Dam H.Q., Manzone T.A., Kim S.M., Imaging of the thyroid in benign and malignant disease, Semin Nucl Med, 42, 1, pp. 49-61, (2012)
  104. Mariani G., Tonacchera M., Grosso M., Orsolini F., Vitti P., Strauss H.W., The role of nuclear medicine in the clinical management of benign thyroid disorders, Part 1: Hyperthyroidism, J Nucl Med, 62, 3, pp. 304-312, (2021)
  105. Al-Sharif A.A., Abujbara M.A., Chiacchio S., Ajlouni K.M., Mariani G., Contribution of radioiodine uptake measurement and thyroid scintigraphy to the differential diagnosis of thyrotoxicosis, Hell J Nucl Med, 13, 2, pp. 132-137, (2010)
  106. Giovanella L., Suriano S., Maffioli M., Ceriani L., Spriano G., (99m)Tc-sestamibi scanning in thyroid nodules with nondiagnostic cytology, Head Neck, 32, 5, pp. 607-611, (2010)
  107. Patel N.R., Tamara L.A., Lee H., 99mTc sestamibi thyroid scan in amiodarone-induced thyrotoxicosis type I, Clin Nucl Med, 41, 7, pp. 566-567, (2016)
  108. Treglia G., Bertagna F., Piccardo A., Giovanella L., 131I whole-body scan or 18FDG PET/CT for patients with elevated thyroglobulin and negative ultrasound?, Clin Transl Imag, 1, 3, pp. 175-183, (2013)
  109. Burguera B., Gharib H., Thyroid incidentalomas, Endocrinol Metab Clin N Am, 29, 1, pp. 187-203, (2000)
  110. Bertagna F., Treglia G., Piccardo A., Giubbini R., Diagnostic and clinical significance of F-18-FDG-PET/CT thyroid incidentalomas, J Clin Endocrinol Metab, 97, 11, pp. 3866-3875, (2012)
  111. Treglia G., Bertagna F., Sadeghi R., Verburg F.A., Ceriani L., Giovanella L., Focal thyroid incidental uptake detected by 18F-fluorodeoxyglucose positron emission tomography: Meta-analysis on prevalence and malignancy risk, Nuklearmedizin, 52, 4, pp. 130-136, (2013)
  112. Shie P., Cardarelli R., Sprawls K., Fulda K.G., Taur A., Systematic review: Prevalence of malignant incidental thyroid nodules identified on fluorine-18 fluorodeoxyglucose positron emission tomography, Nucl Med Commun, 30, 9, pp. 742-748, (2009)
  113. Soelberg K.K., Bonnema S.J., Brix T.H., Hegedus L., Risk of malignancy in thyroid incidentalomas detected by 18 F-fluorodeoxyglucose positron emission tomography: A systematic review, Thyroid, 22, 9, pp. 918-925, (2012)
  114. Nayan S., Ramakrishna J., Gupta M.K., The proportion of malignancy in incidental thyroid lesions on 18-FDG PET study: A systematic review and meta-analysis, Otolaryngol Neck Surg, 151, 2, pp. 190-200, (2014)
  115. Haber R.S., Weiser K.R., Pritsker A., Reder I., Burstein D.E., GLUT1 glucose transporter expression in benign and malignant thyroid nodules, Thyroid, 7, 3, pp. 363-367, (1997)
  116. Kang K.W., Kim S.-K., Kang H.-S., Lee E.S., Sim J.S., Lee I.G., Et al., Prevalence and risk of cancer of focal thyroid incidentaloma identified by 18 F-fluorodeoxyglucose positron emission tomography for metastasis evaluation and cancer screening in healthy subjects, J Clin Endocrinol Metab, 88, 9, pp. 4100-4104, (2003)
  117. Nardi F., Basolo F., Crescenzi A., Fadda G., Frasoldati A., Orlandi F., Et al., Italian consensus for the classification and reporting of thyroid cytology, J Endocrinol Investig, 37, 6, pp. 593-599, (2014)
  118. Fadda G., Basolo F., Bondi A., Bussolati G., Crescenzi A., Nappi O., Et al., Cytological classification of thyroid nodules. Proposal of the SIAPEC-IAP Italian Consensus Working Group, Pathologica, 102, 5, pp. 405-408, (2010)
  119. Cibas E.S., Ali S.Z., The Bethesda system for reporting thyroid cytopathology, Thyroid, 19, 11, pp. 1159-1165, (2009)
  120. Straccia P., Rossi E.D., Bizzarro T., Brunelli C., Cianfrini F., Damiani D., Et al., A meta-analytic review of the Bethesda System for Reporting Thyroid Cytopathology: Has the rate of malignancy in indeterminate lesions been underestimated?: TBSRTC for Indeterminate Lesions, Cancer Cytopathol, 123, 12, pp. 713-722, (2015)
  121. Piccardo A., Puntoni M., Dezzana M., Bottoni G., Foppiani L., Marugo A., Et al., Indeterminate thyroid nodules. The role of 18F-FDG PET/CT in the “era” of ultrasonography risk stratification systems and new thyroid cytology classifications, Endocrine, 69, 3, pp. 553-561, (2020)
  122. Vriens D., Adang E.M.M., Netea-Maier R.T., Smit J.W.A., de Wilt J.H.W., Oyen W.J.G., Et al., Cost-effectiveness of FDG-PET/CT for cytologically indeterminate thyroid nodules: A decision analytic approach, J Clin Endocrinol Metab, 99, 9, pp. 3263-3274, (2014)
  123. Mikosch P., Gallowitsch H.J., Kresnik E., Lind P., Preoperative assessment of thyroid nodules in an endemic goiter region--possibilities and limitations, Wien Med Wochenschr 1946, 151, 13-14, pp. 278-287, (2001)
  124. Vriens D., De Wilt J.H.W., Van der Wilt G.J., Netea-Maier R.T., Oyen W.J.G., De Geus-Oei L.F., The role of [18 F]-2-fluoro-2-deoxy-d-glucose-positron emission tomography in thyroid nodules with indeterminate fine-needle aspiration biopsy: Systematic review and meta-analysis of the literature, Cancer, 117, 20, pp. 4582-4594, (2011)
  125. Piccardo A., Puntoni M., Treglia G., Foppiani L., Bertagna F., Paparo F., Et al., Thyroid nodules with indeterminate cytology: Prospective comparison between 18F-FDG-PET/CT, multiparametric neck ultrasonography, 99mTc-MIBI scintigraphy and histology, Eur J Endocrinol, 174, 5, pp. 693-703, (2016)
  126. Choi J.Y., Lee K.S., Kim H.-J., Shim Y.M., Kwon O.J., Park K., Et al., Focal thyroid lesions incidentally identified by integrated 18F-FDG PET/CT: Clinical significance and improved characterization, J Nucl Med off Publ Soc Nucl Med, 47, 4, pp. 609-615, (2006)
  127. Bae J., Chae B., Park W., Kim J., Kim S., Jung S., Et al., Incidental thyroid lesions detected by FDG-PET/CT: Prevalence and risk of thyroid cancer, World J Surg Oncol, 7, 1, (2009)
  128. Piccardo A., Puntoni M., Bertagna F., Treglia G., Foppiani L., Arecco F., Et al., 18F-FDG uptake as a prognostic variable in primary differentiated thyroid cancer incidentally detected by PET/CT: A multicentre study, Eur J Nucl Med Mol Imaging, 41, 8, pp. 1482-1491, (2014)
  129. Cohen M.S., Arslan N., Dehdashti F., Doherty G.M., Lairmore T.C., Brunt L.M., Et al., Risk of malignancy in thyroid incidentalomas identified by fluorodeoxyglucose-positron emission tomography, Surgery, 130, 6, pp. 941-946, (2001)
  130. Kim T.Y., Kim W.B., Ryu J.S., Gong G., Hong S.J., Shong Y.K., 18F-fluorodeoxyglucose uptake in thyroid from positron emission tomogram (PET) for evaluation in cancer patients: High prevalence of malignancy in thyroid PET incidentaloma, Laryngoscope, 115, 6, pp. 1074-1078, (2005)
  131. Are C., Hsu J.F., Schoder H., Shah J.P., Larson S.M., Shaha A.R., FDG-PET detected thyroid incidentalomas: Need for further investigation?, Ann Surg Oncol, 14, 1, pp. 239-247, (2006)
  132. Bogsrud T.V., Karantanis D., Nathan M.A., Mullan B.P., Wiseman G.A., Collins D.A., Et al., The value of quantifying 18F-FDG uptake in thyroid nodules found incidentally on whole-body PET–CT, Nucl Med Commun, 28, 5, pp. 373-381, (2007)
  133. Beech P., Lavender I., Jong I., Soo G., Ramdave S., Chong A., Et al., Ultrasound stratification of the FDG-avid thyroid nodule, Clin Radiol, 71, 2, pp. 164-169, (2016)
  134. Perros P., Boelaert K., Colley S., Evans C., Evans R.M., Gerrard B.A.G., Et al., Guidelines for the management of thyroid cancer, Clin Endocrinol, 81, pp. 1-122, (2014)
  135. Al-Sarraf N., Gately K., Lucey J., Aziz R., Doddakula K., Wilson L., Et al., Clinical implication and prognostic significance of standardised uptake value of primary non-small cell lung cancer on positron emission tomography: Analysis of 176 cases☆, Eur J Cardiothorac Surg, 34, 4, pp. 892-897, (2008)
  136. Robbins R.J., Wan Q., Grewal R.K., Reibke R., Gonen M., Strauss H.W., Et al., Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-d-glucose-positron emission tomography scanning, J Clin Endocrinol Metab, 91, 2, pp. 498-505, (2006)
  137. Are C., Hsu J.F., Ghossein R.A., Schoder H., Shah J.P., Shaha A.R., Histological aggressiveness of fluorodeoxyglucose positron-emission tomogram (FDG-PET)-detected incidental thyroid carcinomas, Ann Surg Oncol, 14, 11, pp. 3210-3215, (2007)
  138. Demir O., Kose N., Ozkan E., Unluturk U., Aras G., Erdogan M.F., Clinical significance of thyroid incidentalomas identified by 18F-FDG PET/CT: Correlation of ultrasonograpy findings with cytology results, Nucl Med Commun, 37, 7, pp. 715-720, (2016)
  139. Kwak J.Y., Kim E.-K., Yun M., Cho A., Kim M.J., Son E.J., Et al., Thyroid incidentalomas identified by 18 F-FDG PET: Sonographic correlation, Am J Roentgenol, 191, 2, pp. 598-603, (2008)
  140. Kang B.J., Jh O., Baik J.H., Jung S.L., Park Y.H., Chung S.K., Incidental thyroid uptake on F-18 FDG PET/CT: Correlation with ultrasonography and pathology, Ann Nucl Med, 23, 8, pp. 729-737, (2009)
  141. Morita S., Mizoguchi K., Suzuki M., Iizuka K., The accuracy of 18[F]-fluoro-2-deoxy-d-glucose-positron emission tomography/computed tomography, ultrasonography, and enhanced computed tomography alone in the preoperative diagnosis of cervical lymph node metastasis in patients with papillary thyroid carcinoma, World J Surg, 34, 11, pp. 2564-2569, (2010)
  142. Piccardo A., Trimboli P., Foppiani L., Treglia G., Ferrarazzo G., Massollo M., Et al., PET/CT in thyroid nodule and differentiated thyroid cancer patients. The evidence-based state of the art, Rev Endocr Metab Disord, 20, 1, pp. 47-64, (2019)
  143. Mevawalla N., McMullen T., Sidhu S., Sywak M., Robinson B., Delbridge L., Presentation of clinically solitary thyroid nodules in surgical patients, Thyroid, 21, 1, pp. 55-59, (2011)
  144. Jin J., McHenry C.R., Thyroid incidentaloma, Best Pract Res Clin Endocrinol Metab, 26, 1, pp. 83-96, (2012)
  145. Davies L., Pichiotino E., Black W.C., Tosteson A.N.A., Developing a registry for thyroid incidentalomas: Lessons learned and the path forward, Thyroid, 26, 5, pp. 650-656, (2016)
  146. Sollini M., Cozzi L., Pepe G., Antunovic L., Lania A., Di Tommaso L., Et al., [18F]FDG-PET/CT texture analysis in thyroid incidentalomas: Preliminary results, Eur J Hybrid Imag, 1, 1, (2017)
  147. Jin J., Wilhelm S.M., McHenry C.R., Incidental thyroid nodule: Patterns of diagnosis and rate of malignancy, Am J Surg, 197, 3, pp. 320-324, (2009)
  148. Van den Bruel A., Maes A., de Potter T., Mortelmans L., Drijkoningen M., van Damme B., Et al., Clinical relevance of thyroid fluorodeoxyglucose-whole body positron emission tomography incidentaloma, J Clin Endocrinol Metab, 87, 4, pp. 1517-1520, (2002)
  149. Abdel-Halim C.N., Rosenberg T., Bjorndal K., Madsen A.R., Jakobsen J., Dossing H., Et al., Risk of malignancy in FDG-avid thyroid incidentalomas on PET/CT: A prospective study, World J Surg, 43, 10, pp. 2454-2458, (2019)
  150. Bonabi S., Schmidt F., Broglie M.A., Haile S.R., Stoeckli S.J., Thyroid incidentalomas in FDG-PET/CT: Prevalence and clinical impact, Eur Arch Otorhinolaryngol, 269, 12, pp. 2555-2560, (2012)
  151. Boeckmann J., Bartel T., Siegel E., Bodenner D., Stack B.C., Can the pathology of a thyroid nodule be determined by positron emission tomography uptake?, Otolaryngol Neck Surg, 146, 6, pp. 906-912, (2012)
  152. Ladron de Guevara H.D., Munizaga M.C., Garcia S.N., Letelier B.C., Wash F.A., Frecuencia de malignidad en incidentalomas tiroideos detectados con tomografía por emisión de positrones/tomografía computada (PET/CT) con F18-FDG de cuerpo entero, Rev Médica Chile, 148, 1, pp. 10-16, (2020)
  153. Bertagna F., Albano D., Giovanella L., Bonacina M., Durmo R., Giubbini R., Et al., 68Ga-PSMA PET thyroid incidentalomas, Hormones, 18, 2, pp. 145-149, (2019)
  154. Verma P., Malhotra G., Agrawal R., Sonavane S., Meshram V., Asopa R.V., Evidence of prostate-specific membrane antigen expression in metastatic differentiated thyroid cancer using 68Ga-PSMA-HBED-CC PET/CT, Clin Nucl Med, 43, 8, pp. e265-e268, (2018)
  155. Lutje S., Gomez B., Cohnen J., Umutlu L., Gotthardt M., Poeppel T.D., Et al., Imaging of prostate-specific membrane antigen expression in metastatic differentiated thyroid cancer using 68Ga-HBED-CC-PSMA PET/CT, Clin Nucl Med, 42, 1, pp. 20-25, (2017)
  156. Sager S., Vatankulu B., Uslu L., Sonmezoglu K., Incidental detection of follicular thyroid carcinoma in 68 Ga-PSMA PET/CT imaging, J Nucl Med Technol, 44, 3, pp. 199-200, (2016)
  157. Lalire P., Zalzali M., Garbar C., Bruna-Muraille C., Morland D., Incidental detection of oxyphilic papillary thyroid carcinoma by 18F-fluorocholine PET/CT, Clin Nucl Med, 41, 6, pp. 512-513, (2016)
  158. Aziz A., Courbon F., Dierickx L.O., Pascal P., Zerdoud S., Oncocytic adenoma of thyroid incidentally detected by 18F-fluorocholine PET/CT, J Nucl Med Technol, 43, 2, pp. 133-134, (2015)
  159. Seifert P., Winkens T., Kuhnel C., Guhne F., Freesmeyer M., I-124-PET/US fusion imaging in comparison to conventional diagnostics and Tc-99m pertechnetate SPECT/US fusion imaging for the function assessment of thyroid nodules, Ultrasound Med Biol, 45, 9, pp. 2298-2308, (2019)
  160. Bahn R.S., Burch H.B., Cooper D.S., Garber J.R., Greenlee M.C., Et al., Hyperthyroidism and other causes of thyrotoxicosis: Management guidelines of the American Thyroid Association and American Association of Clinical Endocrinologists, Thyroid, 21, 6, pp. 593-646, (2011)
  161. Walsh J.P., Managing thyroid disease in general practice, Med J Aust, 205, 4, pp. 179-184, (2016)
  162. El-Sayed Husseni M.-K., The incidence of hypothyroidism following the radioactive iodine treatment of Graves' disease and the predictive factors influencing its development, World J Nucl Med, 15, 1, pp. 30-37, (2016)
  163. Intenzo C.M., Capuzzi D.M., Jabbour S., Kim S.M., Depapp A.E., Scintigraphic features of autoimmune thyroiditis, Radiographics, 21, 4, pp. 957-964, (2001)
  164. Nayak B., Burman K., Thyrotoxicosis and thyroid storm, Endocrinol Metab Clin N Am, 35, 4, pp. 663-686, (2006)