Rapid increase in the risk of heat-related mortality

Carregando...
Imagem de Miniatura
Citações na Scopus
13
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PORTFOLIO
Autores
LUTHI, Samuel
FAIRLESS, Christopher
FISCHER, Erich M.
SCOVRONICK, Noah
GUO, Yue Leon
GUO, Yuming
HONDA, Yasushi
HUBER, Veronika
KYSELY, Jan
Citação
NATURE COMMUNICATIONS, v.14, n.1, article ID 4894, 10p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Heat-related mortality has been identified as one of the key climate extremes posing a risk to human health. Current research focuses largely on how heat mortality increases with mean global temperature rise, but it is unclear how much climate change will increase the frequency and severity of extreme summer seasons with high impact on human health. In this probabilistic analysis, we combined empirical heat-mortality relationships for 748 locations from 47 countries with climate model large ensemble data to identify probable past and future highly impactful summer seasons. Across most locations, heat mortality counts of a 1-in-100 year season in the climate of 2000 would be expected once every ten to twenty years in the climate of 2020. These return periods are projected to further shorten under warming levels of 1.5 ? and 2 ?, where heat-mortality extremes of the past climate will eventually become commonplace if no adaptation occurs. Our findings highlight the urgent need for strong mitigation and adaptation to reduce impacts on human lives.
Palavras-chave
Referências
  1. Armstrong B, 2019, ENVIRON HEALTH PERSP, V127, DOI 10.1289/EHP5430
  2. Arnell NW, 2016, CLIMATIC CHANGE, V134, P387, DOI 10.1007/s10584-014-1084-5
  3. Aznar-Siguan G, 2019, GEOSCI MODEL DEV, V12, P3085, DOI 10.5194/gmd-12-3085-2019
  4. Basu R, 2002, EPIDEMIOL REV, V24, P190, DOI 10.1093/epirev/mxf007
  5. Benmarhnia T, 2015, EPIDEMIOLOGY, V26, P781, DOI 10.1097/EDE.0000000000000375
  6. Bevacqua E, 2022, NAT CLIM CHANGE, V12, P350, DOI 10.1038/s41558-022-01309-5
  7. Blennow K, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0050182
  8. Bresch D. N., 2020, GEOSCI MODEL DEV DIS, P1, DOI [10.5194/gmd-2020-151, DOI 10.5194/GMD-2020-151]
  9. Carleton T. A., 2020, Valuing the global mortality consequences of climate change accounting for adaptation costs and benefits, DOI [10.2139/ssrn.3224365, DOI 10.2139/SSRN.3224365]
  10. Casanueva A, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16152657
  11. Christidis N, 2015, NAT CLIM CHANGE, V5, P46, DOI [10.1038/nclimate2468, 10.1038/NCLIMATE2468]
  12. de Schrijver E, 2021, GEOHEALTH, V5, DOI 10.1029/2020GH000363
  13. Deser C, 2020, NAT CLIM CHANGE, V10, P277, DOI 10.1038/s41558-020-0731-2
  14. Eberenz S., 2020, NAT HAZARDS EARTH SY, P1, DOI [10.5194/nhess-2020-229, DOI 10.5194/NHESS-2020-229]
  15. Fischer EM, 2021, NAT CLIM CHANGE, V11, P689, DOI 10.1038/s41558-021-01092-9
  16. Fischer EM, 2015, NAT CLIM CHANGE, V5, P560, DOI 10.1038/nclimate2617
  17. Fouillet A, 2006, INT ARCH OCC ENV HEA, V80, P16, DOI 10.1007/s00420-006-0089-4
  18. Gasparrini A, 2010, STAT MED, V29, P2224, DOI 10.1002/sim.3940
  19. Gasparrini A., 2017, LANCET PLANET HEALTH, V1, pe360, DOI [10.1016/S2542-5196(17)30156-0, DOI 10.1016/S2542-5196(17)30156-0]
  20. Gasparrini A, 2015, LANCET, V386, P369, DOI 10.1016/S0140-6736(14)62114-0
  21. Gasparrini A, 2015, ENVIRON HEALTH PERSP, V123, P1200, DOI 10.1289/ehp.1409070
  22. Gasparrini A, 2014, BMC MED RES METHODOL, V14, DOI 10.1186/1471-2288-14-55
  23. Gasparrini A, 2014, STAT MED, V33, P881, DOI 10.1002/sim.5963
  24. Gasparrini A, 2011, J STAT SOFTW, V43, P1, DOI 10.18637/jss.v043.i08
  25. Gough K. V., 2019, J. Br. Acad, V7, P155, DOI [DOI 10.5871/JBA/007S2.155, 10.5871/jba/007s2.155]
  26. Guo YM, 2017, ENVIRON HEALTH PERSP, V125, DOI 10.1289/EHP1026
  27. Hoffman JS, 2020, CLIMATE, V8, DOI 10.3390/cli8010012
  28. Huber V, 2022, ENVIRON RES LETT, V17, DOI 10.1088/1748-9326/ac5dee
  29. Jeffrey S, 2013, AUST METEOROL OCEAN, V63, P1
  30. Kay JE, 2015, B AM METEOROL SOC, V96, P1333, DOI 10.1175/BAMS-D-13-00255.1
  31. Kirchmeier-Young MC, 2017, J CLIMATE, V30, P553, DOI 10.1175/JCLI-D-16-0412.1
  32. Kottek M, 2006, METEOROL Z, V15, P259, DOI 10.1127/0941-2948/2006/0130
  33. Lee T, 2017, MITIG ADAPT STRAT GL, V22, P761, DOI 10.1007/s11027-015-9697-1
  34. Lo YTE, 2019, SCI ADV, V5, DOI 10.1126/sciadv.aau4373
  35. Lüthi S, 2021, GEOSCI MODEL DEV, V14, P7175, DOI 10.5194/gmd-14-7175-2021
  36. Madaniyazi L, 2022, INT J EPIDEMIOL, V51, P122, DOI 10.1093/ije/dyab143
  37. Meehl GA, 2004, SCIENCE, V305, P994, DOI 10.1126/science.1098704
  38. Meiler S, 2022, NAT COMMUN, V13, DOI 10.1038/s41467-022-33918-1
  39. Mitchell D, 2016, ENVIRON RES LETT, V11, DOI 10.1088/1748-9326/11/7/074006
  40. Mora C, 2017, NAT CLIM CHANGE, V7, P501, DOI [10.1038/nclimate3322, 10.1038/NCLIMATE3322]
  41. Morice CP, 2021, J GEOPHYS RES-ATMOS, V126, DOI 10.1029/2019JD032361
  42. Moss RH, 2010, NATURE, V463, P747, DOI 10.1038/nature08823
  43. OKE TR, 1982, Q J ROY METEOR SOC, V108, P1, DOI 10.1002/qj.49710845502
  44. Pal JS, 2016, NAT CLIM CHANGE, V6, P197, DOI [10.1038/nclimate2833, 10.1038/NCLIMATE2833]
  45. Portner H.-.-O., 2022, contribution of working group ii to the sixth assessment report of the intergovernmental panel on climate change, P3056
  46. Rajczak J, 2016, INT J CLIMATOL, V36, P1226, DOI 10.1002/joc.4417
  47. Reckien D, 2018, J CLEAN PROD, V191, P207, DOI 10.1016/j.jclepro.2018.03.220
  48. Revich B. A., 2011, EKOL CHELOVEKA, P3
  49. Robine JM, 2008, CR BIOL, V331, P171, DOI 10.1016/j.crvi.2007.12.001
  50. Rodgers KB, 2015, BIOGEOSCIENCES, V12, P3301, DOI 10.5194/bg-12-3301-2015
  51. Santos P. C. D., 2015, ISEE C ABSTR, DOI [10.1289/isee.2015.2015-624, DOI 10.1289/ISEE.2015.2015-624]
  52. Sauer IJ, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-22153-9
  53. Schär C, 2016, NAT CLIM CHANGE, V6, P128, DOI 10.1038/nclimate2864
  54. Schär C, 2004, NATURE, V427, P332, DOI 10.1038/nature02300
  55. Scovronick N, 2018, ENVIRON RES, V161, P229, DOI 10.1016/j.envres.2017.11.001
  56. Sellers S., 2016, GENDER CLIMATE CHANG
  57. Sera F, 2019, STAT MED, V38, P5429, DOI 10.1002/sim.8362
  58. Sherwood SC, 2010, P NATL ACAD SCI USA, V107, P9552, DOI 10.1073/pnas.0913352107
  59. Sillmann J, 2008, CLIMATIC CHANGE, V86, P83, DOI 10.1007/s10584-007-9308-6
  60. Stott PA, 2004, NATURE, V432, P610, DOI 10.1038/nature03089
  61. Suarez-Gutierrez L, 2018, ENVIRON RES LETT, V13, DOI 10.1088/1748-9326/aaba58
  62. Uejio CK, 2011, HEALTH PLACE, V17, P498, DOI 10.1016/j.healthplace.2010.12.005
  63. Urban A, 2022, URBAN CLIM, V44, DOI 10.1016/j.uclim.2022.101197
  64. Vicedo-Cabrera AM, 2021, NAT CLIM CHANGE, V11, P492, DOI 10.1038/s41558-021-01058-x
  65. Vicedo-Cabrera AM, 2019, EPIDEMIOLOGY, V30, P321, DOI 10.1097/EDE.0000000000000982
  66. Vicedo-Cabrera AM, 2018, ENVIRON INT, V111, P239, DOI 10.1016/j.envint.2017.11.006
  67. Vicedo-Cabrera AM, 2018, CLIMATIC CHANGE, V150, P391, DOI 10.1007/s10584-018-2274-3
  68. Weber EU, 2006, CLIMATIC CHANGE, V77, P103, DOI 10.1007/s10584-006-9060-3
  69. Welker C, 2021, NAT HAZARD EARTH SYS, V21, P279, DOI 10.5194/nhess-21-279-2021
  70. Wu Y, 2022, LANCET PLANET HEALTH, V6, pE410, DOI 10.1016/S2542-5196(22)00073-0
  71. Xu ZW, 2018, SCI TOTAL ENVIRON, V630, P679, DOI 10.1016/j.scitotenv.2018.02.268