Evaluation of gut microbiota predictive potential associated with phenotypic characteristics to identify multifactorial diseases

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2024
Título da Revista
ISSN da Revista
Título do Volume
Editora
TAYLOR & FRANCIS INC
Citação
GUT MICROBES, v.16, n.1, article ID 2297815, 18p, 2024
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Gut microbiota has been implicated in various clinical conditions, yet the substantial heterogeneity in gut microbiota research results necessitates a more sophisticated approach than merely identifying statistically different microbial taxa between healthy and unhealthy individuals. Our study seeks to not only select microbial taxa but also explore their synergy with phenotypic host variables to develop novel predictive models for specific clinical conditions. Design: We assessed 50 healthy and 152 unhealthy individuals for phenotypic variables (PV) and gut microbiota (GM) composition by 16S rRNA gene sequencing. The entire modeling process was conducted in the R environment using the Random Forest algorithm. Model performance was assessed through ROC curve construction. Results: We evaluated 52 bacterial taxa and pre-selected PV (p < 0.05) for their contribution to the final models. Across all diseases, the models achieved their best performance when GM and PV data were integrated. Notably, the integrated predictive models demonstrated exceptional performance for rheumatoid arthritis (AUC = 88.03%), type 2 diabetes (AUC = 96.96%), systemic lupus erythematosus (AUC = 98.4%), and type 1 diabetes (AUC = 86.19%). Conclusion: Our findings underscore that the selection of bacterial taxa based solely on differences in relative abundance between groups is insufficient to serve as clinical markers. Machine learning techniques are essential for mitigating the considerable variability observed within gut microbiota. In our study, the use of microbial taxa alone exhibited limited predictive power for health outcomes, while the integration of phenotypic variables into predictive models substantially enhanced their predictive capabilities.
Palavras-chave
Gut microbiota, phenotypic variables, 16S rRNA, random forest, prediction models
Referências
  1. Ahmad A, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0226372
  2. Ananthakrishnan AN, 2017, CELL HOST MICROBE, V21, P603, DOI 10.1016/j.chom.2017.04.010
  3. Aronson Jeffrey K, 2017, Curr Protoc Pharmacol, V76, DOI 10.1002/cpph.19
  4. Balmant BD, 2023, NUTRIENTS, V15, DOI 10.3390/nu15081999
  5. Bielka W, 2022, INT J MOL SCI, V23, DOI 10.3390/ijms23010480
  6. Callahan BJ, 2016, NAT METHODS, V13, P581, DOI [10.1038/nmeth.3869, 10.1038/NMETH.3869]
  7. Castellarin M, 2012, GENOME RES, V22, P299, DOI 10.1101/gr.126516.111
  8. Chávez-Carbajal A, 2020, MICROORGANISMS, V8, DOI 10.3390/microorganisms8010094
  9. da Rocha IMG, 2023, NUTRIENTS, V15, DOI 10.3390/nu15194148
  10. Dekaboruah E, 2020, ARCH MICROBIOL, V202, P2147, DOI 10.1007/s00203-020-01931-x
  11. Dhaliwal J, 2021, J PEDIATR GASTR NUTR, V72, P262, DOI 10.1097/MPG.0000000000002956
  12. Douglas GM, 2018, MICROBIOME, V6, DOI 10.1186/s40168-018-0398-3
  13. Doumatey AP, 2020, FRONT CELL INFECT MI, V10, DOI 10.3389/fcimb.2020.00063
  14. Ghannam RB, 2021, COMPUT STRUCT BIOTEC, V19, P1092, DOI 10.1016/j.csbj.2021.01.028
  15. Gou WL, 2021, DIABETES CARE, V44, P358, DOI 10.2337/dc20-1536
  16. Gupta VK, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-18476-8
  17. Han H, 2016, INT CONF SOFTW ENG, P219, DOI 10.1109/ICSESS.2016.7883053
  18. He ZX, 2016, GUT PATHOG, V8, DOI 10.1186/s13099-016-0146-9
  19. HOSMER DW, 1980, COMMUN STAT A-THEOR, V9, P1043, DOI 10.1080/03610928008827941
  20. Kohli A, 2020, WORLD J GASTROENTERO, V26, DOI 10.3748/wjg.v26.i44.6923
  21. Kuhn M, 2008, J STAT SOFTW, V28, P1, DOI 10.18637/jss.v028.i05
  22. Kurilshikov A, 2021, NAT GENET, V53, P156, DOI 10.1038/s41588-020-00763-1
  23. Ley RE, 2006, NATURE, V444, P1022, DOI 10.1038/4441022a
  24. Li PS, 2022, MICROB CELL FACT, V21, DOI 10.1186/s12934-022-01973-4
  25. Li Q, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-62224-3
  26. Li Y, 2019, CLIN SCI, V133, P821, DOI 10.1042/CS20180841
  27. Love MI, 2014, GENOME BIOL, V15, DOI 10.1186/s13059-014-0550-8
  28. Marcos-Zambrano LJ, 2021, FRONT MICROBIOL, V12, DOI 10.3389/fmicb.2021.634511
  29. Metwaly A, 2022, NAT REV GASTRO HEPAT, V19, P383, DOI 10.1038/s41575-022-00581-2
  30. Olesen SW, 2016, NAT MICROBIOL, V1, DOI [10.1038/NMICROBIOL.2016.228, 10.1038/nmicrobiol.2016.228]
  31. Osman MA, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-82465-0
  32. Pascal V, 2017, GUT, V66, P813, DOI 10.1136/gutjnl-2016-313235
  33. Pires DEV, 2018, bioRxiv, DOI [10.1101/263293, 10.1101/263293, DOI 10.1101/263293]
  34. Poussin C, 2018, DRUG DISCOV TODAY, V23, P1644, DOI 10.1016/j.drudis.2018.06.005
  35. Rinninella E, 2019, MICROORGANISMS, V7, DOI 10.3390/microorganisms7010014
  36. Salim F, 2023, CURR OPIN BIOTECH, V79, DOI 10.1016/j.copbio.2022.102884
  37. Sankarasubramanian J, 2020, FRONT MED-LAUSANNE, V7, DOI 10.3389/fmed.2020.606298
  38. Scher JU, 2015, ARTHRITIS RHEUMATOL, V67, P128, DOI 10.1002/art.38892
  39. Schloss PD, 2018, MBIO, V9, DOI 10.1128/mBio.00525-18
  40. Shariati A, 2021, INFECT AGENTS CANCER, V16, DOI 10.1186/s13027-021-00381-4
  41. Shilo S, 2022, DIABETES CARE, V45, P555, DOI 10.2337/dc21-1656
  42. Smart CEM, 2013, DIABETES CARE, V36, P3897, DOI 10.2337/dc13-1195
  43. Vila AV, 2018, SCI TRANSL MED, V10, DOI 10.1126/scitranslmed.aap8914
  44. Vujkovic-Cvijin I, 2020, NATURE, V587, P448, DOI 10.1038/s41586-020-2881-9
  45. Wei F, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0213063
  46. Wilkinson JE, 2021, NAT MED, V27, P766, DOI 10.1038/s41591-021-01258-0
  47. Wu HL, 2018, BIOMED RES INT, V2018, DOI 10.1155/2018/2936257
  48. Yang L, 2022, MICROBIOME, V10, DOI 10.1186/s40168-022-01320-0
  49. Zuo WX, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-022-07995-7