Exposure to air pollution as an environmental determinant of how Sjögren's disease is expressed at diagnosis

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
CLINICAL & EXPER RHEUMATOLOGY
Autores
BRITO-ZERON, P.
FLORES-CHAVEZ, A.
NG, W. -F.
HORVATH, I. Fanny
RASMUSSEN, A.
PRIORI, R.
BALDINI, C.
ARMAGAN, B.
OZKIZILTAS, B.
PRAPROTNIK, S.
Citação
CLINICAL AND EXPERIMENTAL RHEUMATOLOGY, v.41, n.12, p.2448-2457, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
ObjectiveTo analyse how the potential exposure to air pollutants can influence the key components at the time of diagnosis of Sjogren's phenotype (epidemiological profile, sicca symptoms, and systemic disease). MethodsFor the present study, the following variables were selected for harmonisation and refinement: age, sex, country, fulfilment of 2002/2016 criteria items, dry eyes, dry mouth, and overall ESSDAI score. Air pollution indexes per country were defined according to the OECD (1990-2021), including emission data of nitrogen and sulphur oxides (NO/SO), particulate matter (PM2.5 and 1.0), carbon monoxide (CO) and volatile organic compounds (VOC) calculated per unit of GDP, Kg per 1000 USD.ResultsThe results of the chi-square tests of independence for each air pollutant with the frequency of dry eyes at diagnosis showed that, except for one, all variables exhibited p-values <0.0001. The most pronounced disparities emerged in the dry eye prevalence among individuals inhabiting countries with the highest NO/SO exposure, a surge of 4.61 percentage points compared to other countries, followed by CO (3.59 points), non-methane (3.32 points), PM2.5 (3.30 points), and PM1.0 (1.60 points) exposures. Concerning dry mouth, individuals residing in countries with worse NO/SO exposures exhibited a heightened frequency of dry mouth by 2.05 percentage points (p<0.0001), followed by non-methane exposure (1.21 percentage points increase, p=0.007). Individuals inhabiting countries with the worst NO/SO, CO, and PM2.5 pollution levels had a higher mean global ESSDAI score than those in lower-risk nations (all p-values <0.0001). When systemic disease was stratified according to DAS into low, moderate, and high systemic activity levels, a heightened proportion of individuals manifesting moderate/severe systemic activity was observed in countries with worse exposures to NO/SO, CO, and PM2.5 pollutant levels. ConclusionFor the first time, we suggest that pollution levels could influence how SjD appears at diagnosis in a large international cohort of patients. The most notable relationships were found between symptoms (dryness and general body symptoms) and NO/SO, CO, and PM2.5 levels.
Palavras-chave
Sjogren's syndrome, dryness, systemic, ESSDAI, air pollution, environment
Referências
  1. Alves M, 2023, OCUL SURF, V29, P1, DOI 10.1016/j.jtos.2023.04.007
  2. Bernatsky S, 2015, ENVIRON RES, V140, P474, DOI 10.1016/j.envres.2015.05.007
  3. Brito-Zerón P, 2022, CLIN EXP RHEUMATOL, V40, P2413, DOI 10.55563/clinexprheumatol/3bvq48
  4. Brito-Zerón P, 2023, ECLINICALMEDICINE, V61, DOI 10.1016/j.eclinm.2023.102062
  5. Brito-Zerón P, 2023, MED CLIN-BARCELONA, V160, P163, DOI 10.1016/j.medcli.2022.10.007
  6. Brito-Zerón P, 2016, NAT REV DIS PRIMERS, V2, DOI 10.1038/nrdp.2016.47
  7. Celen H, 2022, ACTA CLIN BELG, V77, P874, DOI 10.1080/17843286.2021.1992582
  8. Chen Y, 2022, ENVIRON RES, V214, DOI 10.1016/j.envres.2022.114017
  9. Chung CJ, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18136860
  10. Engel P, 2011, PHARMACOL REV, V63, P127, DOI 10.1124/pr.109.002006
  11. Ferraro S, 2015, EXP TOXICOL PATHOL, V67, P125, DOI 10.1016/j.etp.2014.10.007
  12. Galor A, 2014, OPHTHALMOLOGY, V121, P972, DOI 10.1016/j.ophtha.2013.11.036
  13. Galperín G, 2018, ARQ BRAS OFTALMOL, V81, P481, DOI 10.5935/0004-2749.20180091
  14. Gibert K, 2016, AI COMMUN, V29, P627, DOI 10.3233/AIC-160710
  15. Hernández-Molina G, 2022, RHEUMATOLOGY, V62, P243, DOI 10.1093/rheumatology/keac205
  16. Huang A, 2020, JAMA OPHTHALMOL, V138, P867, DOI 10.1001/jamaophthalmol.2020.2237
  17. Kwon D, 2022, J AM HEART ASSOC, V11, DOI 10.1161/JAHA.121.024092
  18. López-Miguel A, 2016, AM J OPHTHALMOL, V161, P133, DOI 10.1016/j.ajo.2015.09.039
  19. Ma KSK, 2023, FRONT IMMUNOL, V13, DOI 10.3389/fimmu.2022.1044462
  20. MAES MJA, 2022, Monitoring exposure to climate-related hazards, DOI [10.1787/19970900, DOI 10.1787/19970900]
  21. Mandell JT, 2020, J CLIN MED, V9, DOI 10.3390/jcm9113740
  22. Mavragani CP, 2017, ANNU REV MED, V68, P331, DOI 10.1146/annurev-med-043015-123313
  23. Novaes P, 2010, ENVIRON RES, V110, P372, DOI 10.1016/j.envres.2010.03.003
  24. OECD Statistics, ABOUT US
  25. Ramos-Casals M, 1998, LUPUS, V7, P202, DOI 10.1191/096120398678920019
  26. Rezayat AA, 2022, LUPUS, V31, P1606, DOI 10.1177/09612033221127569
  27. Roeser A, 2023, RESP RES, V24, DOI 10.1186/s12931-023-02463-w
  28. Schioppo T, 2020, EPIDEMIOL PREV, V44, P228, DOI 10.19191/EP20.4.P228.052
  29. Sisó-Almirall A, 2021, CLIN EXP RHEUMATOL, V39, pS197, DOI 10.55563/clinexprheumatol/pal3z7
  30. Sun G, 2016, INT J RHEUMATOL, V2016, DOI 10.1155/2016/5356307
  31. Thorlacius GE, 2023, NAT REV RHEUMATOL, V19, P288, DOI 10.1038/s41584-023-00932-6
  32. VITALI C, 1993, ARTHRITIS RHEUM, V36, P340, DOI 10.1002/art.1780360309
  33. Wang H, 2023, CURR EYE RES, V48, P447, DOI 10.1080/02713683.2023.2167213
  34. Woo JMP, 2022, J INTERN MED, V291, P755, DOI 10.1111/joim.13448
  35. Zhang TP, 2022, FRONT IMMUNOL, V13, DOI 10.3389/fimmu.2022.1059981
  36. Zhao CN, 2019, AUTOIMMUN REV, V18, P607, DOI 10.1016/j.autrev.2018.12.010
  37. Zhao NZ, 2022, ARTHRITIS RES THER, V24, DOI 10.1186/s13075-022-02843-5
  38. Zhao WM, 2022, FRONT IMMUNOL, V13, DOI 10.3389/fimmu.2022.991256