Analysis of intracranial pressure waveform using a non-invasive method in individuals with craniosynostosis

Nenhuma Miniatura disponível
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2024
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER
Autores
BRANDAO, Michele Madeira
TONELLO, Cristiano
PARIZOTTO, Isabella
MACHADO, Luciano Brandao
Citação
CHILDS NERVOUS SYSTEM, v.40, n.1, p.145-152, 2024
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
PurposeCraniosynostosis can lead to symptoms resulting from cranial compliance (CC) changes and intracranial hypertension (ICH), which may cause cognitive and visual impairment. Non-invasive methods have emerged, including a new device that captures and processes the intracranial pressure waveform (ICPw) by the skull's oscillation. The present study evaluates ICPw obtained non-invasively (NIICPw) in patients with craniosynostosis.MethodsThis prospective, cross-sectional, and descriptive study was conducted at a single center. Patients diagnosed with craniosynostosis and who provided informed consent were included. A US Food and Drug Administration-approved mechanical extensometer device (Brain4Care Corp.) was used to obtain a NIICPw. An ophthalmologist did a point-of-care retinography to check the optic nerve papilla. The P2/P1 ratio and the morphology of the NIICPw were analyzed, as well as the retinography.ResultsThirty-five patients were evaluated, and 42 registers were obtained because seven were assessed before and after the surgery. The two patients who presented papilledema had low CC (NIICPw shape Class 3 or 4). There was a significant association between NIICPw and papilledema.ConclusionThe ratio P2/P1 and the NIICPw morphology provided by a non-invasive monitor are related to CC changes before papilledema occurs. This is especially useful in patients with craniosynostosis because invasive ICP monitoring is not always feasible. Further studies are warranted to establish the clinical utility of NIICPw in patients with craniosynostosis.
Palavras-chave
Intracranial hypertension, Craniosynostosis, Intracranial pressure, Papilledema
Referências
  1. Alperin N, 2020, MAGN RESON MATER PHY, V33, P753, DOI 10.1007/s10334-020-00880-2
  2. Andrade RDP, 2021, IEEE SENS J, V21, P22270, DOI 10.1109/JSEN.2021.3090648
  3. [Anonymous], 1783, LONDON MEDICAL J, V4, P113
  4. Brasil S, 2022, NONINVASIVE INTRACRA, DOI [10.21203/rs.3.rs-1902652/v1, DOI 10.21203/RS.3.RS-1902652/V1]
  5. Brasil S, 2021, PERSONALIZED MED NOV, DOI [10.3390/jpm11121302, DOI 10.3390/JPM11121302]
  6. Brasil S, 2021, BRAIN SCI, V11, DOI 10.3390/brainsci11080971
  7. Bristol Ruth E, 2004, Semin Pediatr Neurol, V11, P262, DOI 10.1016/j.spen.2004.11.001
  8. CARDOSO ER, 1983, J NEUROSURG, V59, P817, DOI 10.3171/jns.1983.59.5.0817
  9. de Goederen R, 2020, J NEUROSURG-PEDIATR, V25, P506, DOI 10.3171/2019.12.PEDS19562
  10. de Moraes FM, 2022, NEUROCRIT CARE, V37, P219, DOI 10.1007/s12028-022-01477-4
  11. Eide PK, 2005, PEDIATR NEUROSURG, V41, P122, DOI 10.1159/000085868
  12. Eide PK, 2002, PEDIATR NEUROSURG, V37, P310, DOI 10.1159/000066311
  13. Fearon JA, 2022, PLAST RECONSTR SURG, V150, p381E, DOI 10.1097/PRS.0000000000009367
  14. FOK H, 1992, BRIT J PLAST SURG, V45, P394, DOI 10.1016/0007-1226(92)90013-N
  15. Fric R, 2021, ACTA NEUROCHIR, V163, P2015, DOI 10.1007/s00701-020-04680-4
  16. FRISEN L, 1982, J NEUROL NEUROSUR PS, V45, P13, DOI 10.1136/jnnp.45.1.13
  17. GAULT DT, 1992, PLAST RECONSTR SURG, V90, P377, DOI 10.1097/00006534-199209000-00003
  18. Hayward R, 2005, CHILD NERV SYST, V21, P880, DOI 10.1007/s00381-004-1114-0
  19. Hayward R, 2005, J NEUROSURG, V102, P16, DOI 10.3171/ped.2005.102.1.0016
  20. HEIFETZ MD, 1981, J NEUROSURG, V55, P811, DOI 10.3171/jns.1981.55.5.0811
  21. Hill CA, 2011, CLEFT PALATE-CRAN J, V48, P394, DOI 10.1597/10-051
  22. Kazimierska A, COMPLIANCE CEREBROSP, DOI [10.1007/s00701-021-04834-y/Published, DOI 10.1007/S00701-021-04834-Y/PUBLISHED]
  23. Lang S-S., 2020, J NEURSURG PEDIAT, V25, P2
  24. Langfitt T W, 1969, Clin Neurosurg, V16, P436
  25. Ballestero MFM, 2017, CHILD NERV SYST, V33, P1517, DOI 10.1007/s00381-017-3475-1
  26. MARCHAC D, 1989, WORLD J SURG, V13, P358, DOI 10.1007/BF01660748
  27. Mataczynski C, 2022, IEEE J BIOMED HEALTH, V26, P494, DOI 10.1109/JBHI.2021.3088629
  28. MILLER JD, 1973, J NEUROSURG, V39, P186, DOI 10.3171/jns.1973.39.2.0186
  29. Müller SJ, 2023, J CLIN MED, V12, DOI 10.3390/jcm12062209
  30. Nucci CG, 2016, ACTA NEUROCHIR, V158, P581, DOI 10.1007/s00701-015-2672-5
  31. Proctor MR, 2019, JNSPG 75 ANNIVERSARY, DOI [10.3171/2019.7.PEDS18585, DOI 10.3171/2019.7.PEDS18585]
  32. Raksin PB., 2003, Neurosurgical Focus, V14, P1
  33. Renier D, 2006, NEUROCHIRURGIE, V52, P259
  34. Rubiano AM, 2022, CURR OPIN CRIT CARE, V28, P101, DOI 10.1097/MCC.0000000000000920
  35. Rufai SR, 2021, BMJ OPEN, V11, DOI 10.1136/bmjopen-2020-046935
  36. Rufai SR, 2021, J CRANIOFAC SURG, V32, P201, DOI 10.1097/SCS.0000000000006771
  37. Swanson J., 2015, CLEFT PALATE-CRAN J, V52
  38. Ueno T, 1998, ACT NEUR S, V71, P66
  39. Uryga A, 2023, J NEUROSURG, V139, P201, DOI 10.3171/2022.10.JNS221523
  40. Wilson AT, 2020, DEV MED CHILD NEUROL, V62, P799, DOI 10.1111/dmcn.14487