4-Hydroxynonenal impairs miRNA maturation in heart failure via Dicer post-translational modification

Nenhuma Miniatura disponível
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
OXFORD UNIV PRESS
Autores
KIYUNA, Ligia A.
CANDIDO, Darlan S.
BECHARA, Luiz R. G.
JESUS, Itamar C. G.
RAMALHO, Lisley S.
KRUM, Barbara
ALBUQUERQUE, Ruda P.
CAMPOS, Juliane C.
BOZI, Luiz H. M.
ZAMBELLI, Vanessa O.
Citação
EUROPEAN HEART JOURNAL, v.44, n.44, Special Issue, p.4696-4712, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background and Aims Developing novel therapies to battle the global public health burden of heart failure remains challenging. This study investigates the underlying mechanisms and potential treatment for 4-hydroxynonenal (4-HNE) deleterious effects in heart failure.Methods Biochemical, functional, and histochemical measurements were applied to identify 4-HNE adducts in rat and human failing hearts. In vitro studies were performed to validate 4-HNE targets.Results 4-HNE, a reactive aldehyde by-product of mitochondrial dysfunction in heart failure, covalently inhibits Dicer, an RNase III endonuclease essential for microRNA (miRNA) biogenesis. 4-HNE inhibition of Dicer impairs miRNA processing. Mechanistically, 4-HNE binds to recombinant human Dicer through an intermolecular interaction that disrupts both activity and stability of Dicer in a concentration- and time-dependent manner. Dithiothreitol neutralization of 4-HNE or replacing 4-HNE-targeted residues in Dicer prevents 4-HNE inhibition of Dicer in vitro. Interestingly, end-stage human failing hearts from three different heart failure aetiologies display defective 4-HNE clearance, decreased Dicer activity, and miRNA biogenesis impairment. Notably, boosting 4-HNE clearance through pharmacological re-activation of mitochondrial aldehyde dehydrogenase 2 (ALDH2) using Alda-1 or its improved orally bioavailable derivative AD-9308 restores Dicer activity. ALDH2 is a major enzyme responsible for 4-HNE removal. Importantly, this response is accompanied by improved miRNA maturation and cardiac function/remodelling in a pre-clinical model of heart failure.Conclusions 4-HNE inhibition of Dicer directly impairs miRNA biogenesis in heart failure. Strikingly, decreasing cardiac 4-HNE levels through pharmacological ALDH2 activation is sufficient to re-establish Dicer activity and miRNA biogenesis; thereby representing potential treatment for patients with heart failure. Structured Graphical Abstract The vicious cycle of heart failure (HF). (i) Impaired aldehyde metabolism by aldehyde dehydrogenase 2 (ALDH2); (ii) accumulation of 4-hydroxynonenal (4-HNE), a reactive aldehyde by-product of mitochondrial dysfunction; (iii) direct 4-HNE inhibition of Dicer, an RNase III endonuclease essential for microRNA (miRNA) biogenesis; and (iv) overall impairment of miRNA biogenesis, which negatively impacts HF outcome. Blue and red arrows/inhibitors represent the vicious cycle of HF and the benefits of small molecule activators of ALDH2 in HF, respectively.
Palavras-chave
Oxidative stress, Aldehyde, Mitochondria, Therapy, Cardiac diseases
Referências
  1. Apellaniz-Ruiz M, 2020, J PATHOL CLIN RES, V6, P185, DOI 10.1002/cjp2.164
  2. Bernstein E, 2001, NATURE, V409, P363, DOI 10.1038/35053110
  3. Campos JC, 2017, AUTOPHAGY, V13, P1304, DOI 10.1080/15548627.2017.1325062
  4. Chen CH, 2008, SCIENCE, V321, P1493, DOI 10.1126/science.1158554
  5. Chen CH, 2014, PHYSIOL REV, V94, P1, DOI 10.1152/physrev.00017.2013
  6. Chen JF, 2008, P NATL ACAD SCI USA, V105, P2111, DOI 10.1073/pnas.0710228105
  7. Davies AM, 2018, J THEOR BIOL, V457, P1, DOI 10.1016/j.jtbi.2018.08.014
  8. Doorn JA, 2006, CHEM RES TOXICOL, V19, P102, DOI 10.1021/tx0501839
  9. Ebert AD, 2014, SCI TRANSL MED, V6, DOI 10.1126/scitranslmed.3009027
  10. Emde A, 2015, EMBO J, V34, P2633, DOI 10.15252/embj.201490493
  11. Feng ZH, 2004, P NATL ACAD SCI USA, V101, P8598, DOI 10.1073/pnas.0402794101
  12. Ferreira JCB, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-018-08276-6
  13. Ferreira JCB, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033175
  14. Filipowicz W, 2008, NAT REV GENET, V9, P102, DOI 10.1038/nrg2290
  15. Forman HJ, 2021, NAT REV DRUG DISCOV, V20, P689, DOI 10.1038/s41573-021-00233-1
  16. Gomes KMS, 2015, INT J CARDIOL, V179, P129, DOI 10.1016/j.ijcard.2014.10.140
  17. Gomes KMS, 2014, CARDIOVASC RES, V103, P498, DOI 10.1093/cvr/cvu125
  18. Hwang HTV, 2020, CIRCULATION, V142, P1667, DOI 10.1161/CIRCULATIONAHA.120.045470
  19. Kalghatgi S, 2013, SCI TRANSL MED, V5, DOI 10.1126/scitranslmed.3006055
  20. Kiyuna LA, 2018, FREE RADICAL BIO MED, V129, P155, DOI 10.1016/j.freeradbiomed.2018.09.019
  21. Kok KH, 2007, J BIOL CHEM, V282, P17649, DOI 10.1074/jbc.M611768200
  22. Lima VM, 2021, METABOLISM, V117, DOI 10.1016/j.metabol.2021.154723
  23. Lin SB, 2015, NAT REV CANCER, V15, P321, DOI 10.1038/nrc3932
  24. Liu ZM, 2018, CELL, V173, P1549, DOI 10.1016/j.cell.2018.05.031
  25. MacRae IJ, 2007, NAT STRUCT MOL BIOL, V14, P934, DOI 10.1038/nsmb1293
  26. MacRae IJ, 2006, SCIENCE, V311, P195, DOI 10.1126/science.1121638
  27. Martins PADC, 2008, CIRCULATION, V118, P1567, DOI 10.1161/CIRCULATIONAHA.108.769984
  28. McCormack AL, 2005, J NEUROCHEM, V93, P1030, DOI 10.1111/j.1471-4159.2005.03088.x
  29. McDonagh TA, 2022, EUR J HEART FAIL, V24, P4, DOI [10.1016/j.rec.2022.05.005, 10.1002/ejhf.2333]
  30. Melo S, 2011, P NATL ACAD SCI USA, V108, P4394, DOI 10.1073/pnas.1014720108
  31. Oliverio M, 2016, NAT CELL BIOL, V18, P328, DOI 10.1038/ncb3316
  32. Perez-Miller S, 2010, NAT STRUCT MOL BIOL, V17, P159, DOI 10.1038/nsmb.1737
  33. Podolska K, 2014, J BIOMOL SCREEN, V19, P417, DOI 10.1177/1087057113497400
  34. Rocha AL, 2020, SCI ADV, V6, DOI 10.1126/sciadv.abc6250
  35. Santin Y, 2020, CELL DEATH DIFFER, V27, P1907, DOI 10.1038/s41418-019-0470-y
  36. Shan G, 2008, NAT BIOTECHNOL, V26, P933, DOI 10.1038/nbt.1481
  37. Shen L, 2017, CIRC-HEART FAIL, V10, DOI 10.1161/CIRCHEARTFAILURE.117.004361
  38. Srinivasan AR, 2022, AGING CELL, V21, DOI 10.1111/acel.13559
  39. Sun LH, 2011, SCI TRANSL MED, V3, DOI 10.1126/scitranslmed.3002067
  40. Wang YX, 2019, FREE RADICAL BIO MED, V131, P237, DOI 10.1016/j.freeradbiomed.2018.11.037