Genomic landscapes of ovarian clear cell carcinoma from latin countries reveal aberrations linked to survival and progression

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
BMC
Autores
ROFFE, Martin
ROMERO, Ignacio
LOPEZ-GUERRERO, Jose Antonio
ILLUECA, Carmen
LOPEZ, Raquel
COSTA, Alexandre Andre Balieiro Anastacio da
BROT, Louise De
MOLINA, Juan Pablo
BARBOZA, Laura
Citação
BMC CANCER, v.23, n.1, article ID 613, 13p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
BackgroundOvarian clear cell carcinomas (OCCCs) are rare, aggressive and chemoresistant tumors. Geographical and ethnic differences in the incidence of OCCC have been reported with a higher incidence in Asiatic countries. There is a paucity of information regarding OCCC in Latin America (LA) and other countries.MethodsHere, we characterized two cohorts of 33 patients with OCCC from LA (24 from Brazil and 9 from Costa Rica) and a cohort of 27 patients from Spain. Genomic analysis was performed for 26 OCCC using the OncoScan platform. Tumors were classified according to their genomic landscapes into subgroups. Clinical parameters were related to the frequency of genomic aberrations.ResultsThe median overall survival (OS) was not significantly different between the cohorts. Genomic landscapes were characterized by different homologous recombination deficiency (HRD) levels. No difference in the distribution of genomic landscapes profiles was detected between patients from the different cohorts. OCCCs with MYC-amplified tumors harboring a concomitant loss of a region in chromosome 13q12-q13 that includes the BRCA2 gene had the longest OS. In contrast, patients carrying a high number (> 30) of total copy number (CN) aberrations with no concomitant alterations in MYC and BRCA2 genes presented the shortest OS. Furthermore, amplification of the ASH1L gene was also associated with a shorter OS. Initial-stage OCCCs with early progression were characterized by gains in the JNK1 and MKL1 genes.ConclusionsOur results provide new data from understudied OCCC populations and reveal new potential markers for OCCCs.
Palavras-chave
Clear cell carcinoma of the Ovary, OncoScan, Latin Countries, Overall survival, Homologous recombination Deficiency
Referências
  1. Abkevich V, 2012, BRIT J CANCER, V107, P1776, DOI 10.1038/bjc.2012.451
  2. Anglesio MS, 2015, J PATHOL, V236, P201, DOI 10.1002/path.4516
  3. Anglesio MS, 2011, CLIN CANCER RES, V17, P2538, DOI 10.1158/1078-0432.CCR-10-3314
  4. Anglesio MS, 2011, GYNECOL ONCOL, V121, P407, DOI 10.1016/j.ygyno.2011.01.005
  5. Bai HM, 2016, GYNECOL ONCOL, V143, P526, DOI 10.1016/j.ygyno.2016.10.009
  6. Bell D, 2011, NATURE, V474, P609, DOI 10.1038/nature10166
  7. Birkbak NJ, 2012, CANCER DISCOV, V2, P366, DOI 10.1158/2159-8290.CD-11-0206
  8. Buhard O, 2006, J CLIN ONCOL, V24, P241, DOI 10.1200/JCO.2005.02.7227
  9. Caumanns JJ, 2018, CLIN CANCER RES, V24, P3928, DOI 10.1158/1078-0432.CCR-17-3060
  10. Chan JK, 2008, GYNECOL ONCOL, V109, P370, DOI 10.1016/j.ygyno.2008.02.006
  11. Chandler RL, 2014, NAT COMMUN
  12. Cheng Y, 2019, SIGNAL TRANSDUCT TAR, V4, DOI 10.1038/s41392-019-0095-0
  13. Chiang YC, 2013, J GYNECOL ONCOL, V24, P342, DOI 10.3802/jgo.2013.24.4.342
  14. Coburn SB, 2017, INT J CANCER, V140, P2451, DOI 10.1002/ijc.30676
  15. Friedlander ML, 2016, INT J GYNECOL CANCER, V26, P648, DOI 10.1097/IGC.0000000000000677
  16. Fujimoto A, 2016, NAT GENET, V48, P500, DOI 10.1038/ng.3547
  17. Gourley C., 2020, INT J GYNECOL CANCER, V0, P1
  18. Hicks J, 2006, GENOME RES, V16, P1465, DOI 10.1101/gr.5460106
  19. Ho ESC, 2001, GYNECOL ONCOL, V80, P189, DOI 10.1006/gyno.2000.6025
  20. Itamochi H, 2017, BRIT J CANCER, V117, P717, DOI 10.1038/bjc.2017.228
  21. Iwasaki M, 2008, EUR J CANCER PREV, V17, P1, DOI 10.1097/CEJ.0b013e32811080df
  22. Khalique S, 2020, SEMIN CANCER BIOL, V61, P121, DOI 10.1016/j.semcancer.2019.10.025
  23. Kim SI, 2018, GYNECOL ONCOL, V148, P375, DOI 10.1016/j.ygyno.2017.12.005
  24. Kim SI, 2016, J GYNECOL ONCOL, V27, DOI 10.3802/jgo.2016.27.e5
  25. Köbel M, 2010, INT J GYNECOL PATHOL, V29, P203, DOI 10.1097/PGP.0b013e3181c042b6
  26. Korenaga TR, 2020, GYNECOL ONCOL, V157, P62, DOI 10.1016/j.ygyno.2020.01.034
  27. Kristensen GB, 2003, ANN ONCOL, V14, P1494, DOI 10.1093/annonc/mdg403
  28. Kuo KT, 2010, CLIN CANCER RES, V16, P1997, DOI 10.1158/1078-0432.CCR-09-2105
  29. Lee YY, 2011, GYNECOL ONCOL, V122, P541, DOI 10.1016/j.ygyno.2011.05.009
  30. Lord CJ, 2017, SCIENCE, V355, P1152, DOI 10.1126/science.aam7344
  31. Marks EI, 2020, AM J CLIN ONCOL-CANC, V43, P139, DOI 10.1097/COC.0000000000000641
  32. Murakami R, 2017, AM J PATHOL, V187, P2246, DOI 10.1016/j.ajpath.2017.06.012
  33. Mutch DG, 2014, GYNECOL ONCOL, V133, P401, DOI 10.1016/j.ygyno.2014.04.013
  34. Okamoto A, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0116977
  35. Okamoto A, 2014, INT J GYNECOL CANCER, V24, pS20, DOI 10.1097/IGC.0000000000000289
  36. Orezzoli JP, 2008, GYNECOL ONCOL, V110, P336, DOI 10.1016/j.ygyno.2008.05.025
  37. Park JY, 2018, INT J GYNECOL CANCER, V28, P11, DOI 10.1097/IGC.0000000000001136
  38. Pearce CL, 2012, LANCET ONCOL, V13, P385, DOI 10.1016/S1470-2045(11)70404-1
  39. Pennington KP, 2014, CLIN CANCER RES, V20, P764, DOI 10.1158/1078-0432.CCR-13-2287
  40. Pesenti C, 2022, EUR J CANCER, V171, P85, DOI 10.1016/j.ejca.2022.05.005
  41. Popova T, 2012, CANCER RES, V72, P5454, DOI 10.1158/0008-5472.CAN-12-1470
  42. Rahman MT, 2012, CANCER-AM CANCER SOC, V118, P2846, DOI 10.1002/cncr.26598
  43. Rehman FL, 2012, CANCER DISCOV, V2, P982, DOI 10.1158/2159-8290.CD-12-0433
  44. Ross EM, 2021, BIOINFORMATICS, V37, P1909, DOI 10.1093/bioinformatics/btaa538
  45. Schuettengruber B, 2011, NAT REV MOL CELL BIO, V12, P799, DOI 10.1038/nrm3230
  46. Shibuya Y, 2018, GENE CHROMOSOME CANC, V57, P51, DOI 10.1002/gcc.22507
  47. Skawran B, 2008, MODERN PATHOL, V21, P505, DOI 10.1038/modpathol.3800998
  48. Storchova Z, 2004, NAT REV MOL CELL BIO, V5, P45, DOI 10.1038/nrm1276
  49. Stuart GCE, 2011, INT J GYNECOL CANCER, V21, P750, DOI 10.1097/IGC.0b013e31821b2568
  50. Sugino K, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-54116-y
  51. Sugiyama T, 2000, CANCER, V88, P2584, DOI 10.1002/1097-0142(20000601)88:11<2584::AID-CNCR22>3.3.CO;2-X
  52. Sung PL, 2014, GYNECOL ONCOL, V133, P147, DOI 10.1016/j.ygyno.2014.02.016
  53. Sztupinszki Z, 2018, NPJ BREAST CANCER, V4, DOI 10.1038/s41523-018-0066-6
  54. Takenaka M, 2019, CLIN CANCER RES, V25, P3962, DOI 10.1158/1078-0432.CCR-18-3691
  55. Tan DSP, 2011, CLIN CANCER RES, V17, P1521, DOI 10.1158/1078-0432.CCR-10-1688
  56. Tanaka Y, 2007, GENE, V397, P161, DOI 10.1016/j.gene.2007.04.027
  57. Telli ML, 2016, CLIN CANCER RES, V22, P3764, DOI 10.1158/1078-0432.CCR-15-2477
  58. Thorvaldsdóttir H, 2013, BRIEF BIOINFORM, V14, P178, DOI 10.1093/bib/bbs017
  59. Trissal MC, 2018, CANCER RES, V78, P3510, DOI 10.1158/0008-5472.CAN-17-3592
  60. Uehara Y, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0128066
  61. Van Loo P, 2010, P NATL ACAD SCI USA, V107, P16910, DOI 10.1073/pnas.1009843107
  62. Vivas-Mejia P, 2010, CLIN CANCER RES, V16, P184, DOI 10.1158/1078-0432.CCR-09-1180
  63. Wang YK, 2017, NAT GENET, V49, P856, DOI 10.1038/ng.3849
  64. Wu QH, 2020, J ENZYM INHIB MED CH, V35, P574, DOI 10.1080/14756366.2020.1720013
  65. Xu B, 2020, J BIOL CHEM, V295, P8834, DOI 10.1074/jbc.RA120.013530
  66. Yahata T, 2012, J OBSTET GYNAECOL RE, V38, P645, DOI 10.1111/j.1447-0756.2011.01755.x
  67. Yamamoto S, 2012, MODERN PATHOL, V25, P615, DOI 10.1038/modpathol.2011.189
  68. Yang Q, 2020, NEOPLASIA, V22, P399, DOI 10.1016/j.neo.2020.06.002
  69. Yap TA, 2020, CANCER DISCOV, V10, P1528, DOI 10.1158/2159-8290.CD-20-0163