The Prolonged Activation of the p65 Subunit of the NF-Kappa-B Nuclear Factor Sustains the Persistent Effect of Advanced Glycation End Products on Inflammatory Sensitization in Macrophages

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2024
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Citação
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, v.25, n.5, article ID 2713, 16p, 2024
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Advanced glycation end products (AGEs) prime macrophages for lipopolysaccharide (LPS)-induced inflammation. We investigated the persistence of cellular AGE-sensitization to LPS, considering the nuclear content of p50 and p65 nuclear factor kappa B (NFKB) subunits and the expression of inflammatory genes. Macrophages treated with control (C) or AGE-albumin were rested for varying intervals in medium alone before being incubated with LPS. Comparisons were made using one-way ANOVA or Student t-test (n = 6). AGE-albumin primed macrophages for increased responsiveness to LPS, resulting in elevated levels of TNF, IL-6, and IL-1beta (1.5%, 9.4%, and 5.6%, respectively), compared to C-albumin. TNF, IL-6, and IL-1 beta secretion persisted for up to 24 h even after the removal of AGE-albumin (area under the curve greater by 1.6, 16, and 5.2 times, respectively). The expressions of Il6 and RelA were higher 8 h after albumin removal, and Il6 and Abca1 were higher 24 h after albumin removal. The nuclear content of p50 remained similar, but p65 showed a sustained increase (2.9 times) for up to 24 h in AGE-albumin-treated cells. The prolonged activation of the p65 subunit of NFKB contributes to the persistent effect of AGEs on macrophage inflammatory priming, which could be targeted for therapies to prevent complications based on the AGE-RAGE-NFKB axis.
Palavras-chave
advanced glycation end products, NFKB, RAGE, toll-like receptor, lipopolysaccharide, inflammation
Referências
  1. ANDREWS NC, 1991, NUCLEIC ACIDS RES, V19, P2499, DOI 10.1093/nar/19.9.2499
  2. [Anonymous], 1998, Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33) Lancet, V352, P837, DOI [10.1016/S0140-6736(98)07019-6, DOI 10.1016/S0140-6736(98)07019-6]
  3. BASU SK, 1976, P NATL ACAD SCI USA, V73, P3178, DOI 10.1073/pnas.73.9.3178
  4. Ceriello A, 2010, DIABETIC MED, V27, P862, DOI 10.1111/j.1464-5491.2010.02967.x
  5. Ceriello A, 2009, J CLIN ENDOCR METAB, V94, P410, DOI 10.1210/jc.2008-1824
  6. Chan PS, 2010, J DIABETES COMPLICAT, V24, P55, DOI 10.1016/j.jdiacomp.2008.10.002
  7. Chen H, 2001, J Tongji Med Univ, V21, P68
  8. Chen LF, 2004, NAT REV MOL CELL BIO, V5, P392, DOI 10.1038/nrm1368
  9. da Silva KS, 2017, FRONT PHYSIOL, V8, DOI 10.3389/fphys.2017.00723
  10. El-Osta A, 2008, J EXP MED, V205, P2409, DOI 10.1084/jem.20081188
  11. Fishman SL, 2018, MOL MED, V24, DOI 10.1186/s10020-018-0060-3
  12. GARFIN DE, 1990, METHOD ENZYMOL, V182, P425
  13. Gomes DJ, 2016, J DIABETES COMPLICAT, V30, P1614, DOI 10.1016/j.jdiacomp.2016.07.001
  14. Gubitosi-Klug RA, 2016, DIABETES CARE, V39, P686, DOI 10.2337/dc15-1990
  15. HAVEL RJ, 1955, J CLIN INVEST, V34, P1345, DOI 10.1172/JCI103182
  16. Iborra RT, 2018, J DIABETES COMPLICAT, V32, P1, DOI 10.1016/j.jdiacomp.2017.09.012
  17. IMURA H, 1993, NEW ENGL J MED, V329, P683, DOI 10.1056/NEJM199309023291002
  18. Iwai K, 2012, TRENDS CELL BIOL, V22, P355, DOI 10.1016/j.tcb.2012.04.001
  19. Khalid M, 2022, BIOMOLECULES, V12, DOI 10.3390/biom12040542
  20. KLEIN D, 1995, BIOCHEM MOL BIOL INT, V36, P59
  21. Kowluru RA, 2004, ACTA DIABETOL, V41, P194, DOI 10.1007/s00592-004-0165-8
  22. Kowluru RA, 2004, J DIABETES COMPLICAT, V18, P282, DOI 10.1016/j.jdiacomp.2004.03.002
  23. Kowluru RA, 2003, DIABETES, V52, P818, DOI 10.2337/diabetes.52.3.818
  24. Kowluru RA, 2007, EXP DIABETES RES, DOI 10.1155/2007/21976
  25. Lan KC, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0124418
  26. Li JF, 1997, J BIOL CHEM, V272, P16498, DOI 10.1074/jbc.272.26.16498
  27. Liu PQ, 2022, BIOMED PHARMACOTHER, V153, DOI 10.1016/j.biopha.2022.113513
  28. Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
  29. LOWRY OH, 1951, J BIOL CHEM, V193, P265
  30. Machado-Lima A, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21197265
  31. Minanni CA, 2021, NUTRIENTS, V13, DOI 10.3390/nu13103633
  32. Mitchell S, 2016, WIRES SYST BIOL MED, V8, P227, DOI 10.1002/wsbm.1331
  33. O'Carroll SJ, 2015, J NEUROINFLAMM, V12, DOI 10.1186/s12974-015-0346-0
  34. Okuda LS, 2012, BBA-MOL CELL BIOL L, V1821, P1485, DOI 10.1016/j.bbalip.2012.08.011
  35. Pinto RS, 2022, DIABETES VASC DIS RE, V19, DOI 10.1177/14791641221085269
  36. Pinto DC, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-26482-6
  37. Prantner D, 2020, FASEB J, V34, P15659, DOI 10.1096/fj.202002136R
  38. Romero-Calvo I, 2010, ANAL BIOCHEM, V401, P318, DOI 10.1016/j.ab.2010.02.036
  39. Sakaguchi M, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0023132
  40. Sharma A, 2021, DIABETES, V70, P772, DOI 10.2337/db20-0357
  41. Shen CY, 2020, MOLECULES, V25, DOI 10.3390/molecules25235591
  42. Shin A, 2022, ANAL BIOANAL CHEM, V414, P4861, DOI 10.1007/s00216-022-04108-1
  43. Song N, 2018, FRONT IMMUNOL, V9, DOI 10.3389/fimmu.2018.02305
  44. Vermeulen L, 2003, EMBO J, V22, P1313, DOI 10.1093/emboj/cdg139
  45. Wan LQ, 2022, INT J BIOL SCI, V18, P809, DOI 10.7150/ijbs.63219
  46. Wu CH, 2002, MOL CELL ENDOCRINOL, V194, P9, DOI 10.1016/S0303-7207(02)00212-5
  47. Xie JL, 2013, CELL SIGNAL, V25, P2185, DOI 10.1016/j.cellsig.2013.06.013
  48. Yao YF, 2022, CARDIOVASC RES, V118, P196, DOI 10.1093/cvr/cvab013
  49. Yu H, 2020, SIGNAL TRANSDUCT TAR, V5, DOI 10.1038/s41392-020-00312-6
  50. Zawada A, 2022, NUTRIENTS, V14, DOI 10.3390/nu14193982
  51. Zgutka K, 2023, INT J MOL SCI, V24, DOI 10.3390/ijms24129881
  52. Zhong HH, 1997, CELL, V89, P413, DOI 10.1016/S0092-8674(00)80222-6
  53. Zhong HH, 2002, MOL CELL, V9, P625, DOI 10.1016/S1097-2765(02)00477-X