Impact of baseline and interim quantitative PET parameters on outcomes of classical Hodgkin Lymphoma

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2024
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER
Citação
ANNALS OF HEMATOLOGY, v.103, n.1, p.175-183, 2024
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Currently, analysis of interim PET (iPET) according to the Deauville score (DS) is the most important predictive factor in Hodgkin lymphoma (HL); however, there is room for improvement in its prognostic power. This study aimed to evaluate the prognostic value of quantitative PET analysis (maximum standard uptake value [SUVmax], total metabolic tumor volume [TMTV] and total lesion glicolysis [TLG]) at baseline (PET0) and iPET in a retrospective cohort of newly diagnosed classical HL. For positive iPET (+ iPET), the reduction of quantitative parameters in relation to PET0 (Delta SUVmax, Delta TMTV and Delta TLG) was calculated. Between 2011 and 2017, 234 patients treated with ABVD were analyzed. Median age was 30 years-old, 59% had advanced stage disease, 57% a bulky mass and 25% a + iPET (DS 4-5). At baseline, high TLG was associated with an increased cumulative incidence of failure (CIF) (p = 0.032) while neither SUVmax, TMTV or TLG were associated with overall survival (OS) or progression-free survival (PFS). In multivariate analysis, only iPET was associated with CIF (p < 0.001). Among Delta SUVmax, Delta TMTV and Delta TLG, only a Delta SUVmax >= 68.8 was significant for PFS (HR: 0.31, CI95%: 0.11-0.86, p = 0.024). A subset of patients with improved PFS amongst + iPET was identified by the quantitative (Delta SUVmax >= 68.8%) analysis. In this real-world Brazilian cohort, with prevalent high-risk patients, quantitative analysis of PET0 did not demonstrate to be prognostic, while a dynamic approach incorporating the Delta SUV(max )to + iPET succeeded in refining a subset with better prognosis. These findings warrant validation in larger series and indicate that not all patients with + iPET might need treatment intensification.
Palavras-chave
Hodgkin lymphoma, Positron emission tomography, Metabolic tumor volume, Total lesion glycolysis
Referências
  1. Akhtari M, 2018, BLOOD, V131, P84, DOI 10.1182/blood-2017-04-773838
  2. Albano D, 2020, ANN HEMATOL, V99, P1321, DOI 10.1007/s00277-020-04039-w
  3. André MPE, 2017, J CLIN ONCOL, V35, P1786, DOI 10.1200/JCO.2016.68.6394
  4. Angelopoulou MK, 2017, ANTICANCER RES, V37, P5727, DOI 10.21873/anticanres.12011
  5. Barrington SE, 2019, J NUCL MED, V60, P1096, DOI 10.2967/jnumed.119.227249
  6. Barrington SF, 2014, J CLIN ONCOL, V32, P3048, DOI 10.1200/JCO.2013.53.5229
  7. Biasoli I, 2018, HEMATOL ONCOL, V36, P189, DOI 10.1002/hon.2450
  8. Boellaard R, 2015, EUR J NUCL MED MOL I, V42, P328, DOI 10.1007/s00259-014-2961-x
  9. BONADONNA G, 1975, CANCER, V36, P252, DOI 10.1002/1097-0142(197507)36:1<252::AID-CNCR2820360128>3.0.CO;2-7
  10. Casasnovas RO, 2016, J CLIN ONCOL, V34, DOI 10.1200/JCO.2016.34.15_suppl.7509
  11. Cerci JJ, 2010, J NUCL MED, V51, P1337, DOI 10.2967/jnumed.109.073197
  12. Cheson BD, 2014, J CLIN ONCOL, V32, P3059, DOI 10.1200/JCO.2013.54.8800
  13. Contal C, 1999, COMPUT STAT DATA AN, V30, P253, DOI 10.1016/S0167-9473(98)00096-6
  14. Cottereau AS, 2016, BLOOD, V128, DOI 10.1182/blood.V128.22.184.184
  15. Cottereau AS., 2017, HEMATOL ONCOL, V35, P35, DOI [10.1002/hon.2437, DOI 10.1002/HON.2437]
  16. Engert A, 2010, NEW ENGL J MED, V363, P640, DOI 10.1056/NEJMoa1000067
  17. Gallamini A, 2017, HAEMATOLOGICA, V102, P145
  18. Gallamini A, 2007, J CLIN ONCOL, V25, P3746, DOI 10.1200/JCO.2007.11.6525
  19. Gallamini A, 2014, HAEMATOLOGICA, V99, P1107, DOI 10.3324/haematol.2013.103218
  20. Hasenclever D, 1998, NEW ENGL J MED, V339, P1506, DOI 10.1056/NEJM199811193392104
  21. Herrera AF, 2023, J CLIN ONCOL, V41
  22. Hutchings M, 2005, ANN ONCOL, V16, P1160, DOI 10.1093/annonc/mdi200
  23. Johnson P, 2016, NEW ENGL J MED, V374, P2419, DOI 10.1056/NEJMoa1510093
  24. Johnson PW., 2015, HEMATOL ONCOL S1, V33, P102, DOI 10.1002/hon.2227
  25. Kanoun S, 2014, EUR J NUCL MED MOL I, V41, P1735, DOI 10.1007/s00259-014-2783-x
  26. Klimm B, 2013, ANN ONCOL, V24, P3070, DOI 10.1093/annonc/mdt413
  27. Lin L, 2012, STATISTICAL TOOLS FOR MEASURING AGREEMENT, P1, DOI 10.1007/978-1-4614-0562-7
  28. Mahuad Carolina, 2022, Clin Hematol Int, V4, P44, DOI 10.1007/s44228-022-00008-4
  29. Mettler J, 2019, J NUCL MED, V60, P207, DOI 10.2967/jnumed.118.210047
  30. Pinochet P, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-02734-w
  31. Radford J, 2015, NEW ENGL J MED, V372, P1598, DOI 10.1056/NEJMoa1408648
  32. Rigacci L, 2015, AM J HEMATOL, V90, P499, DOI 10.1002/ajh.23994
  33. Rossi C, 2014, J NUCL MED, V55, P569, DOI 10.2967/jnumed.113.130609
  34. Rukavitsyn AA., 2017, CLIN ONCOHEMATOL, V10, P182, DOI [10.21320/2500-2139-2017-10-2-182-186, DOI 10.21320/2500-2139-2017-10-2-182-186]
  35. Song MK, 2013, CANCER SCI, V104, P1656, DOI 10.1111/cas.12282
  36. Stephens DM, 2019, BLOOD, V134, P1238, DOI 10.1182/blood.2019000719
  37. Straus DJ, 2020, BLOOD, V136, DOI 10.1182/blood-2020-137089
  38. Straus DJ, 2019, J CLIN ONCOL, V37
  39. Trotman J., 2017, HEMATOL ONCOL, V35, P65, DOI [DOI 10.1002/HON.2437_53, 10.1002/hon.2437_53]
  40. Tseng D, 2012, RADIAT ONCOL, V7, DOI 10.1186/1748-717X-7-5
  41. Yang SM, 2020, ANN HEMATOL, V99, P293, DOI 10.1007/s00277-019-03892-8
  42. Zheng S, 2023, CANCERS, V15, DOI 10.3390/cancers15061760
  43. Zinzani PL, 2016, J CLIN ONCOL, V34, P1376, DOI 10.1200/JCO.2015.63.0699
  44. Zinzani PL, 2012, EUR J NUCL MED MOL I, V39, P4, DOI 10.1007/s00259-011-1916-8