Running intralimb coordination patterns after a foot core exercise program in recreational runners

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2024
Título da Revista
ISSN da Revista
Título do Volume
Editora
ASSOC BRAS DIVULG CIENTIFICA
Autores
VIEIRA, M. F.
MATIAS, A. B.
GOMIDE, R. S.
Citação
BRAZILIAN JOURNAL OF MEDICAL AND BIOLOGICAL RESEARCH, v.57, article ID e13124, 9p, 2024
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
This study investigated the effects of a foot core intervention on the coordination of foot joints in recreational runners. This was a secondary analysis from a randomized controlled trial conducted with 87 recreational runners allocated to the control group (CG), which followed a placebo lower limb stretching protocol, or the intervention group (IG), which underwent an 8-week (3 times/week) foot core training. The participants ran on a force-instrumented treadmill at a self-selected speed (9.5-10.5 km/h) while the foot segment motion was captured. The vector coding technique was used to assess inter-joint coordination for four selected coupled segment and joint angles. The coordination patterns of the calcaneus and midfoot (CalMid) and midfoot and metatarsus (MidMet) joint pairs were affected. In the frontal plane, IG showed an in-phase with proximal dominancy coordination at heel strike, with a decrease in its frequency after the training (P=0.018), suggesting a longer foot supination. Additionally, IG showed an anti-phase with distal dominancy pattern at early stance compared to CG due to a smaller but earlier inversion of the CalMid-MidMet pair (P=0.020). The intervention also had an effect on the transverse plane of the CalMid-MidMet pair, with IG showing a significantly greater frequency of anti-phase coordination with proximal dominancy during propulsion than CG (P=0.013), probably due to a reduction in the CalMid abduction. Overall, the results suggested that the foot core intervention reduces the occurrence of runningrelated injuries by increasing the resistance to calcaneus pronation and building a more rigid and efficient lever during push-off.
Palavras-chave
Running, Exercise therapy, Foot joint kinematics, Coordination patterns
Referências
  1. Arnold JB, 2017, J FOOT ANKLE RES, V10, DOI 10.1186/s13047-017-0228-z
  2. Baltich J, 2017, SCAND J MED SCI SPOR, V27, P1372, DOI 10.1111/sms.12743
  3. Becker J, 2017, AM J SPORT MED, V45, P2614, DOI 10.1177/0363546517708193
  4. Blackwood CB, 2005, FOOT ANKLE INT, V26, P1074, DOI 10.1177/107110070502601213
  5. Buist I, 2008, AM J SPORT MED, V36, P35, DOI 10.1177/0363546507307505
  6. Cloosterman KLA, 2022, BRIT J SPORT MED, V56, DOI 10.1136/bjsports-2021-104539
  7. Desai GA, 2021, J SPORT SCI, V39, P38, DOI 10.1080/02640414.2020.1804519
  8. Dubbeldam R, 2013, GAIT POSTURE, V37, P159, DOI 10.1016/j.gaitpost.2012.06.033
  9. Fellin RE, 2010, J APPL BIOMECH, V26, P407, DOI 10.1123/jab.26.4.407
  10. Ferber R, 2011, J FOOT ANKLE RES, V4, DOI 10.1186/1757-1146-4-6
  11. Fredericson Michael, 2005, Phys Med Rehabil Clin N Am, V16, P669, DOI 10.1016/j.pmr.2005.03.001
  12. Garofolini A, 2019, HUM MOVEMENT SCI, V64, P75, DOI 10.1016/j.humov.2019.01.006
  13. Hafer JF, 2017, GAIT POSTURE, V51, P222, DOI 10.1016/j.gaitpost.2016.11.004
  14. Hamill J, 1999, CLIN BIOMECH, V14, P297, DOI 10.1016/S0268-0033(98)90092-4
  15. Holowka NB, 2018, J EXP BIOL, V221, DOI 10.1242/jeb.174425
  16. Leardini A, 2007, GAIT POSTURE, V25, P453, DOI 10.1016/j.gaitpost.2006.05.017
  17. LUNDBERG A, 1989, ACTA ORTHOP SCAND, V60, P1, DOI 10.3109/17453678909154185
  18. Malisoux L, 2015, SCAND J MED SCI SPOR, V25, P110, DOI 10.1111/sms.12154
  19. Matias AB, 2022, FRONT BIOENG BIOTECH, V10, DOI 10.3389/fbioe.2022.890428
  20. Matias AB, 2016, BMC MUSCULOSKEL DIS, V17, DOI 10.1186/s12891-016-1016-9
  21. Needham Robert A, 2020, Foot (Edinb), V44, P101678, DOI 10.1016/j.foot.2020.101678
  22. Needham RA, 2015, J BIOMECH, V48, P3506, DOI 10.1016/j.jbiomech.2015.07.023
  23. Noehren B, 2007, CLIN BIOMECH, V22, P951, DOI 10.1016/j.clinbiomech.2007.07.001
  24. Noehren B, 2013, MED SCI SPORT EXER, V45, P1120, DOI 10.1249/MSS.0b013e31828249d2
  25. Palmer K, 2015, BMC MUSCULOSKEL DIS, V16, DOI 10.1186/s12891-015-0563-9
  26. Pohl MB, 2010, J FOOT ANKLE RES, V3, DOI 10.1186/1757-1146-3-6
  27. SARRAFIAN SK, 1987, FOOT ANKLE, V8, P4, DOI 10.1177/107110078700800103
  28. Stefanyshyn DJ, 2006, AM J SPORT MED, V34, P1844, DOI 10.1177/0363546506288753
  29. Taddei UT, 2020, AM J SPORT MED, V48, P3610, DOI 10.1177/0363546520969205
  30. Taddei UT, 2020, PHYS THER SPORT, V42, P107, DOI 10.1016/j.ptsp.2020.01.007
  31. Taddei UT, 2018, PHYS THER SPORT, V34, P216, DOI 10.1016/j.ptsp.2018.10.015
  32. van der Worp MP, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0114937
  33. van Emmerik REA, 2016, J SPORT HEALTH SCI, V5, P3, DOI 10.1016/j.jshs.2016.01.013
  34. van Gent RN, 2007, BRIT J SPORT MED, V41, P469, DOI 10.1136/bjsm.2006.033548
  35. VANMECHELEN W, 1993, AM J SPORT MED, V21, P711, DOI 10.1177/036354659302100513
  36. Venkadesan M, 2020, NATURE, V579, P97, DOI 10.1038/s41586-020-2053-y
  37. Williams DS, 2001, CLIN BIOMECH, V16, P341, DOI 10.1016/S0268-0033(01)00005-5
  38. Willy RW, 2011, J ORTHOP SPORT PHYS, V41, P625, DOI 10.2519/jospt.2011.3470
  39. Wu G, 2002, J BIOMECH, V35, P543, DOI 10.1016/S0021-9290(01)00222-6