Tobacco exposure, but not aging, shifts the frequency of peripheral blood B cell subpopulations

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2024
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER
Citação
GEROSCIENCE, v.46, n.2, Special Issue, p.2729-2738, 2024
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Several disturbances in T-cell mediated immunity have been described during aging, but immunosenescence of the B-cell compartment is less well elucidated. The peripheral blood B-cell compartment (CD19+) can be split into six main subpopulations according to the cell surface markers IgD, CD27, CD24, and CD38: Transitional, naive, unswitched, switched, double negative and plasmablasts. We thus aimed to verify whether shifts in these subsets occur during healthy and pathological aging. We recruited three groups of aged people (> 60 years old), healthy, COPD patients, and smokers without altered pulmonary function test, and a fourth group of individuals 18-40 years old (youngs). Total B-cells percentage and absolute number were similar among the healthy aged, COPD patients, and youngs, but the smokers showed significantly higher absolute numbers. While all six B-cell subset percentages were comparable among the healthy aged, COPD patients, and youngs, smokers showed significantly higher percentages of switched B-cells and reduced naive B-cells than the other three groups, resulting in an inverted naive:switched ratio. Analysis of the cell subset absolute numbers showed a similar trend. Overall, our results suggest that aging drives milder alterations in the distribution of peripheral blood B-cell subpopulations than in the T-cell compartment. We suggest that it is the T-cell immunosenescence that most contributes to the poor humoral immune responses in the elderly, vaccine responses included. Surprisingly it was the smokers who showed significant alterations when compared with the youngs, healthy aged, and aged COPD patients, probably as a result of the chronic immune stimulation described in active smoking subjects.
Palavras-chave
B cells, Humoral response, Lymphocytes aging, B-cell subsets
Referências
  1. Beckers L, 2023, IMMUNOL LETT, V255, P67, DOI 10.1016/j.imlet.2023.03.003
  2. Blanco E, 2018, J ALLERGY CLIN IMMUN, V141, P2208, DOI 10.1016/j.jaci.2018.02.017
  3. Borgoni S, 2021, AGEING RES REV, V70, DOI 10.1016/j.arr.2021.101410
  4. Brandsma CA, 2009, RESP RES, V10, DOI 10.1186/1465-9921-10-108
  5. Cancro MP, 2009, TRENDS IMMUNOL, V30, P313, DOI 10.1016/j.it.2009.04.005
  6. Caraux A, 2010, HAEMATOL-HEMATOL J, V95, P1016, DOI 10.3324/haematol.2009.018689
  7. Chang AY, 2019, LANCET PUBLIC HEALTH, V4, pE159, DOI 10.1016/S2468-2667(19)30019-2
  8. Chong Y, 2005, INT IMMUNOL, V17, P383, DOI 10.1093/intimm/dxh218
  9. Ciabattini A, 2018, SEMIN IMMUNOL, V40, P83, DOI 10.1016/j.smim.2018.10.010
  10. Ciocca M, 2021, FRONT IMMUNOL, V12, DOI 10.3389/fimmu.2021.690534
  11. Colonna-Romano G, 2006, REJUV RES, V9, P149, DOI 10.1089/rej.2006.9.149
  12. Colonna-Romano G, 2010, CURR PHARM DESIGN, V16, P604, DOI 10.2174/138161210790883750
  13. Colonna-Romano G, 2009, MECH AGEING DEV, V130, P681, DOI 10.1016/j.mad.2009.08.003
  14. Fernandes JR, 2022, IMMUN AGEING, V19, DOI 10.1186/s12979-022-00267-y
  15. Fernandes JR, 2021, MECH AGEING DEV, V197, DOI 10.1016/j.mad.2021.111501
  16. Franceschi C, 2017, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.00982
  17. Frasca D, 2008, J IMMUNOL, V180, P5283, DOI 10.4049/jimmunol.180.8.5283
  18. Frasca D, 2017, CELL IMMUNOL, V321, P68, DOI 10.1016/j.cellimm.2017.04.007
  19. Frasca D, 2016, VACCINE, V34, P2834, DOI 10.1016/j.vaccine.2016.04.023
  20. Frasca D, 2011, AGEING RES REV, V10, P330, DOI 10.1016/j.arr.2010.08.004
  21. Fulop T, 2023, CLIN REV ALLERG IMMU, V64, P109, DOI 10.1007/s12016-021-08899-6
  22. GrubeckLoebenstein B, 1997, BIOLOGICALS, V25, P205, DOI 10.1006/biol.1997.0085
  23. Listì F, 2006, ANN NY ACAD SCI, V1089, P487, DOI 10.1196/annals.1386.013
  24. López-Otín C, 2013, CELL, V153, P1194, DOI 10.1016/j.cell.2013.05.039
  25. Mittelbrunn M, 2021, NAT IMMUNOL, V22, P687, DOI 10.1038/s41590-021-00927-z
  26. Moszczynski P, 2001, TOXICOL LETT, V118, P121, DOI 10.1016/S0378-4274(00)00270-8
  27. Pawelec G, 2020, MECH AGEING DEV, V192, DOI 10.1016/j.mad.2020.111357
  28. Qiu FF, 2017, ONCOTARGET, V8, P268, DOI 10.18632/oncotarget.13613
  29. Rodriguez IJ, 2021, FRONT IMMUNOL, V11, DOI 10.3389/fimmu.2020.604591
  30. Rossi MID, 2003, BLOOD, V101, P576, DOI 10.1182/blood-2002-03-0896
  31. Sanz I, 2019, FRONT IMMUNOL, V10, DOI 10.3389/fimmu.2019.02458
  32. Shi YH, 2005, J IMMUNOL, V175, P3262, DOI 10.4049/jimmunol.175.5.3262
  33. Tanigawa T, 1998, ARCH ENVIRON HEALTH, V53, P378, DOI 10.1080/00039899809605724
  34. United Nations. Population Division, 2022, WORLD POPULATION PRO, DOI [10.18356/9789210014380, DOI 10.18356/9789210014380]
  35. Wasén C, 2017, J AUTOIMMUN, V78, P101, DOI 10.1016/j.jaut.2016.12.009
  36. Xie XX, 2021, AGING CELL, V20, DOI 10.1111/acel.13341
  37. Zeidel A, 2002, ACTA ANAESTH SCAND, V46, P959, DOI 10.1034/j.1399-6576.2002.460806.x