The effects of low-level laser irradiation on bone tissue in diabetic rats

Carregando...
Imagem de Miniatura
Citações na Scopus
22
Tipo de produção
article
Data de publicação
2014
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER LONDON LTD
Autores
PATROCINIO-SILVA, Tatiane Lopes
SOUZA, Andre Moreira Fogaca de
GOULART, Raul Loppi
PEGORARI, Carolina Fuirini
OLIVEIRA, Jussan Rodrigues
FERNANDES, Kelly
MAGRI, Angela
ARAKI, Daniel Ribeiro
NAGAOKA, Marcia Regina
Citação
LASERS IN MEDICAL SCIENCE, v.29, n.4, p.1357-1364, 2014
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Diabetes mellitus (DM) leads to a decrease in bone mass and increase the risk of osteoporosis and in this context, many treatments have shown to accelerate bone metabolism. It seems that low-level laser therapy (LLLT) is able of stimulating osteoblast activity and produced increased biomechanical properties. However, its effects on bone in diabetic rats are not fully elucidated. The aim of this study was to evaluate the effects of LLLT on bone formation, immunoexpression of osteogenic factors, biomechanical properties and densitometric parameters in diabetic rats. Thirty male Wistar rats were randomly distributed into three experimental groups: control group, diabetic group, and laser-treated diabetic group. DM was induced by streptozotocin (STZ) and after 1 week laser treatment started. An 830-nm laser was used, performed for 18 sessions, during 6 weeks. At the end of the experiment, animals were euthanized and tibias and femurs were defleshed for analysis. Extensive resorptive areas as a result of osteoclasts activity were noticed in DG when compared to control. Laser-treated animals showed an increased cortical area. The immunohistochemical analysis revealed that LLLT produced an increased RUNX-2 expression compared to other groups. Similar RANK-L immunoexpression was observed for all experimental groups. In addition, laser irradiation produced a statistically increase in fracture force, bone mineral content (BMC) and bone mineral density compared to DG. The results of this study indicate that the STZ model was efficient in inducing DM 1 and producing a decrease in cortical diameter, biomechanical properties and in densitometric variables. In addition, it seems that LLLT stimulated bone metabolism, decreased resorptive areas, increased RUNX-2 expression, cortical area, fracture force, BMD, and BMC. Further studies should be developed to provide additional information concerning the mechanisms of action of laser therapy in diabetic bone in experimental and clinical trials.
Palavras-chave
Diabetes mellitus, Bone tissue, Low-level laser therapy
Referências
  1. Abdi S, 2009, PHOTOMED LASER SURG, V27, P907, DOI 10.1089/pho.2008.2421
  2. Akyol UK, 2010, PHOTOMED LASER SURG, V28, P411, DOI 10.1089/pho.2008.2478
  3. Alberti KGMM, 1998, DIABETIC MED, V15, P539, DOI 10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S
  4. Anandarajah AP, 2009, TRENDS ENDOCRIN MET, V20, P88, DOI 10.1016/j.tem.2008.10.007
  5. Bashardoust Tajali S, 2003, OSTEOSYNTHESIS TRAUM, V11, P17
  6. Tajali SB, 2010, J ORTHOP SURG RES, V5, DOI 10.1186/1749-799X-5-1
  7. Bayat M, 2009, PHOTOMED LASER SURG, V27, P703, DOI 10.1089/pho.2008.2351
  8. Blakytny R, 2011, INT J LOW EXTR WOUND, V10, P16, DOI 10.1177/1534734611400256
  9. Bossini PS, 2012, EXP GERONTOL, V47, P136, DOI 10.1016/j.exger.2011.11.005
  10. Coombe AR, 2001, CLIN ORTHOD RES, V4, P3, DOI 10.1034/j.1600-0544.2001.040102.x
  11. Cornish J, 1996, CALCIFIED TISSUE INT, V59, P492, DOI 10.1007/BF00369216
  12. EINHORN TA, 1988, J ORTHOPAED RES, V6, P317, DOI 10.1002/jor.1100060303
  13. Favaro-Pipi E, 2010, LASER MED SCI, V25, P727, DOI 10.1007/s10103-010-0772-2
  14. Fernandes KR, 2013, J BIOMED OPT, V18, DOI 10.1117/1.JBO.18.3.038002
  15. Freitas IGF, 2000, APPL SURF SCI, V154, P548, DOI 10.1016/S0169-4332(99)00431-6
  16. Garavello-Freltas I, 2003, J PHOTOCH PHOTOBIO B, V70, P81, DOI 10.1016/S1011-1344(03)00058-7
  17. Genuth S, 2003, DIABETES CARE, V26, P3160
  18. He HB, 2004, ENDOCRINOLOGY, V145, P447, DOI 10.1210/en.2003-1239
  19. Higgins TF, 2010, J ORTHOP RES, V28, P125, DOI 10.1002/jor.20942
  20. Hogan Paul, 2003, Diabetes Care, V26, P917
  21. Huang S, 2010, BONE, V46, P1138, DOI 10.1016/j.bone.2009.12.020
  22. Javadieh F, 2009, PHOTOMED LASER SURG, V27, P641, DOI 10.1089/pho.2008.2370
  23. Kearns AE, 2008, ENDOCR REV, V29, P155, DOI 10.1210/er.2007-0014
  24. Khadra M, 2004, ORAL SURG ORAL MED O, V97, P693, DOI 10.1016/j.tripleo.2003.11.008
  25. Komori T, 2010, CELL TISSUE RES, V339, P189, DOI 10.1007/s00441-009-0832-8
  26. Lozano D, 2011, BRIT J PHARMACOL, V162, P1424, DOI 10.1111/j.1476-5381.2010.01155.x
  27. Luger EJ, 1998, LASER SURG MED, V22, P97, DOI 10.1002/(SICI)1096-9101(1998)22:2<97::AID-LSM5>3.0.CO;2-R
  28. MATHIASSEN B, 1990, Journal of Diabetic Complications, V4, P145, DOI 10.1016/0891-6632(90)90012-T
  29. Medalha CC, 2010, PHOTOMED LASER SURG, V28, P669, DOI 10.1089/pho.2009.2691
  30. Nissan J, 2006, J ORAL REHABIL, V33, P619, DOI 10.1111/j.1365-2842.2006.01601.x
  31. Nyman JS, 2011, BONE, V48, P733, DOI 10.1016/j.bone.2010.12.016
  32. Pires Oliveira Deise A A, 2008, Photomed Laser Surg, V26, P401, DOI 10.1089/pho.2007.2101
  33. Reddy GK, 2001, WOUND REPAIR REGEN, V9, P248, DOI 10.1046/j.1524-475x.2001.00248.x
  34. Renno ACM, 2006, PHOTOMED LASER SURG, V24, P642, DOI 10.1089/pho.2006.24.642
  35. Stein A, 2005, PHOTOMED LASER SURG, V23, P161, DOI 10.1089/pho.2005.23.161
  36. Suzuki K, 2003, BONE, V33, P108, DOI 10.1016/S8756-3282(03)00169-8
  37. Thrailkill KM, 2005, AM J PHYSIOL-ENDOC M, V289, pE735, DOI 10.1152/ajpendo.00159.2005
  38. Wild S, 2004, DIABETES CARE, V27, P1047, DOI 10.2337/diacare.27.5.1047
  39. Wongdee Kannikar, 2011, World J Diabetes, V2, P41, DOI 10.4239/wjd.v2.i3.41
  40. Yaoita H, 2000, J BONE MINER METAB, V18, P63, DOI 10.1007/s007740050013
  41. Yu W, 1997, LASER SURG MED, V20, P56, DOI 10.1002/(SICI)1096-9101(1997)20:1<56::AID-LSM9>3.0.CO;2-Y