Exercise Training Can Prevent Cardiac Hypertrophy Induced by Sympathetic Hyperactivity with Modulation of Kallikrein-Kinin Pathway and Angiogenesis

Carregando...
Imagem de Miniatura
Citações na Scopus
23
Tipo de produção
article
Data de publicação
2014
Título da Revista
ISSN da Revista
Título do Volume
Editora
PUBLIC LIBRARY SCIENCE
Autores
SILVA JR., Jose Antonio
SANTANA, Eduardo Tadeu
MANCHINI, Martha Trindade
ANTONIO, Ednei Luis
BOCALINI, Danilo Sales
TUCCI, Paulo Jose Ferreira
SERRA, Andrey Jorge
Citação
PLOS ONE, v.9, n.3, article ID e91017, 9p, 2014
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Sympathetic hyperactivity induces adverse effects in myocardial. Recent studies have shown that exercise training induces cardioprotection against sympathetic overload; however, relevant mechanisms of this issue remain unclear. We analyzed whether exercise can prevent pathological hypertrophy induced by sympathetic hyperactivity with modulation of the kallikrein-kinin and angiogenesis pathways. Male Wistar rats were assigned to non-trained group that received vehicle; non-trained isoproterenol treated group (Iso, 0.3 mg kg(-1) day(-1)); and trained group (Iso+Exe) which was subjected to sympathetic hyperactivity with isoproterenol. The Iso rats showed hypertrophy and myocardial dysfunction with reduced force development and relaxation of muscle. The isoproterenol induced severe fibrosis, apoptosis and reduced myocardial capillary. Interestingly, exercise blunted hypertrophy, myocardial dysfunction, fibrosis, apoptosis and capillary decreases. The sympathetic hyperactivity was associated with high abundance of ANF mRNA and beta-MHC mRNA, which was significantly attenuated by exercise. The tissue kallikrein was augmented in the Iso+Exe group, and kinin B-1 receptor mRNA was increased in the Iso group. Moreover, exercise induced an increase of kinin B-2 receptor mRNA in myocardial. The myocardial content of eNOS, VEGF, VEGF receptor 2, pAkt and Bcl-2 were increased in the Iso+Exe group. Likewise, increased expression of pro-apoptotic Bad in the Iso rats was prevented by prior exercise. Our results represent the first demonstration that exercise can modulate kallikrein-kinin and angiogenesis pathways in the myocardial on sympathetic hyperactivity. These findings suggest that kallikrein-kinin and angiogenesis may have a key role in protecting the heart.
Palavras-chave
Referências
  1. Avgeris M, 2010, BIOL CHEM, V391, P505, DOI 10.1515/BC.2010.056
  2. BALLIGAND JL, 1993, P NATL ACAD SCI USA, V90, P347, DOI 10.1073/pnas.90.1.347
  3. Bocalini DS, 2009, INT HEART J, V50, P643
  4. Chao J, 2010, BIOL CHEM, V391, P345, DOI 10.1515/BC.2010.042
  5. Chao JL, 2008, HYPERTENSION, V52, P715, DOI 10.1161/HYPERTENSIONAHA.108.114587
  6. Cheng SM, 2013, INT J CARDIOL, V167, P478, DOI 10.1016/j.ijcard.2012.01.031
  7. Concannon LG, 2012, PM&R, V4, P833, DOI 10.1016/j.pmrj.2012.08.007
  8. Crimi E, 2009, NAT REV CARDIOL, V6, P292, DOI 10.1038/nrcardio.2009.8
  9. Downs DS, 2012, RES Q EXERCISE SPORT, V83, P485
  10. Emami N, 2007, CLIN CHIM ACTA, V381, P78, DOI 10.1016/j.cca.2007.02.023
  11. Emanueli C, 2001, TRENDS PHARMACOL SCI, V22, P478, DOI 10.1016/S0165-6147(00)01761-2
  12. Gallego M, 2001, PHARMACOL RES, V44, P311, DOI 10.1006/phrs.2001.0865
  13. Garber CE, 2011, MED SCI SPORT EXER, V43, P1334, DOI 10.1249/MSS.0b013e318213fefb
  14. GERDES AM, 1994, CARDIOSCIENCE, V5, P203
  15. Golbidi S, 2011, CARDIOL RES PRACT, V6
  16. Heather LC, 2009, J PHYSIOL PHARMACOL, V60, P31
  17. Hein S, 2003, CIRCULATION, V107, P984, DOI 10.1161/01.CIR.0000051865.66123.B7
  18. Huang CY, 2012, J APPL PHYSIOL, V112, P883, DOI 10.1152/japplphysiol.00605.2011
  19. Kapakos Georgia, 2010, Curr Cardiol Rev, V6, P247, DOI 10.2174/157340310793566055
  20. Laufs U, 2005, EUR J CARDIOV PREV R, V12, P407, DOI 10.1097/01.hjr.0000174823.87269.2e
  21. Lu FH, 2013, CELL PHYSIOL BIOCHEM, V31, P728, DOI 10.1159/000350091
  22. Mahabeer R, 2000, PHARMACOL THERAPEUT, V88, P77, DOI 10.1016/S0163-7258(00)00080-2
  23. Meneton P, 2001, P NATL ACAD SCI USA, V98, P2634, DOI 10.1073/pnas.051619598
  24. Moreau ME, 2005, J PHARMACOL SCI, V99, P6, DOI 10.1254/jphs.SRJ05001X
  25. Otani H, 2009, ANTIOXID REDOX SIGN, V11, P1913, DOI 10.1089/ARS.2009.2453
  26. PACKER M, 1988, CIRCULATION, V77, P721
  27. Piepoli Massimo F, 2006, Curr Heart Fail Rep, V3, P33, DOI 10.1007/s11897-006-0029-3
  28. Pontes FL, 2008, INT IMMUNOPHARMACOL, V8, P261, DOI 10.1016/j.intimp.2007.09.001
  29. Rankin AJ, 2012, SCOT MED J, V57, P99, DOI 10.1258/smj.2011.011284
  30. Rengo G, 2010, AM J PHYSIOL-HEART C, V298, pH2032, DOI 10.1152/ajpheart.00702.2009
  31. Rundqvist B, 1997, CIRCULATION, V95, P169
  32. Ruzicka M, 2013, CLIN SCI, V124, P589, DOI 10.1042/CS20120437
  33. Salimeh A, 2013, J PHYSIOL BIOCHEM, V69, P255, DOI 10.1007/s13105-012-0208-5
  34. Serra AJ, 2008, EUR J HEART FAIL, V10, P534, DOI 10.1016/j.ejheart.2008.03.016
  35. Serra AJ, 2010, J PHYSIOL-LONDON, V588, P2431, DOI 10.1113/jphysiol.2010.187310
  36. Silva JA, 2000, FASEB J, V14, P1858
  37. Stein B, 1996, AM J PHYSIOL-HEART C, V270, pH2021
  38. Su JB, 2013, J RENIN ANG IN PRESS
  39. VASSALLO DV, 1988, PHARMACOL RES, V20, P61, DOI 10.1016/S0031-6989(88)80607-6
  40. Wu D, 2012, PLOS ONE, V7
  41. Xu J, 2013, CLIN SCI, V124, P87, DOI 10.1042/CS20120341
  42. Yang L, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0062373
  43. Yin H, 2008, LIFE SCI, V82, P156, DOI 10.1016/j.lfs.2007.10.021
  44. Zhang KR, 2008, APOPTOSIS, V12, P1579