Modeling the exergy behavior of human body

Carregando...
Imagem de Miniatura
Citações na Scopus
61
Tipo de produção
article
Data de publicação
2012
Título da Revista
ISSN da Revista
Título do Volume
Editora
PERGAMON-ELSEVIER SCIENCE LTD
Autores
MADY, Carlos Eduardo Keutenedjian
FERREIRA, Mauricio Silva
YANAGIHARA, Jurandir Itizo
OLIVEIRA JUNIOR, Silvio de
Citação
ENERGY, v.45, n.1, p.546-553, 2012
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Exergy analysis is applied to assess the energy conversion processes that take place in the human body, aiming at developing indicators of health and performance based on the concepts of exergy destroyed rate and exergy efficiency. The thermal behavior of the human body is simulated by a model composed of 15 cylinders with elliptical cross section representing: head, neck, trunk, arms, forearms, hands, thighs, legs, and feet. For each, a combination of tissues is considered. The energy equation is solved for each cylinder, being possible to obtain transitory response from the body due to a variation in environmental conditions. With this model, it is possible to obtain heat and mass flow rates to the environment due to radiation, convection, evaporation and respiration. The exergy balances provide the exergy variation due to heat and mass exchange over the body, and the exergy variation over time for each compartments tissue and blood, the sum of which leads to the total variation of the body. Results indicate that exergy destroyed and exergy efficiency decrease over lifespan and the human body is more efficient and destroys less exergy in lower relative humidities and higher temperatures.
Palavras-chave
Human body behavior, Exergy analysis, Exergy efficiency
Referências
  1. Albuquerque-Neto C, 2008, J BRAZ SOC MECH SCI, V30, P253
  2. Albuquerque-Neto C, 2010, INT J THERMODYN, V13, P105
  3. AOKI I, 1990, J THEOR BIOL, V145, P421, DOI 10.1016/S0022-5193(05)80120-1
  4. AOKI I, 1989, J THEOR BIOL, V141, P11, DOI 10.1016/S0022-5193(89)80004-9
  5. AOKI I, 1987, B MATH BIOL, V49, P321, DOI 10.1007/BF02460123
  6. AOKI I, 1991, J THEOR BIOL, V150, P215, DOI 10.1016/S0022-5193(05)80333-9
  7. ASHRAE: American Society of Heating Refrigerating and Air-Conditioning Engineers, 1993, HDB FUND, P1
  8. BALMER RT, 1982, CHEM ENG COMMUN, V17, P171, DOI 10.1080/00986448208911623
  9. BATATO M, 1990, ENTROPIE, V26, P120
  10. Dear JD, 1997, INT J BIOMETEOROL, V40, P141
  11. Diener JRC, 1997, AMB REV ASS MED BRAS, V43, P245
  12. Ferreira MS, 2009, INT COMMUN HEAT MASS, V36, P718, DOI 10.1016/j.icheatmasstransfer.2009.03.010
  13. Harris JA, 1918, P NATL ACAD SCI USA, V4, P370, DOI 10.1073/pnas.4.12.370
  14. Luo LF, 2009, FRONT PHYS CHINA, V4, P122, DOI 10.1007/s11467-009-0007-9
  15. PENNES HH, 1948, J APPL PHYSIOL, V1, P93
  16. Prek M, 2005, INT J HEAT MASS TRAN, V48, P731, DOI 10.1016/j.ijheatmasstransfer.2004.09.006
  17. Prek M, 2006, ENERGY, V31, P732, DOI 10.1016/j.energy.2005.05.001
  18. Prek M, 2010, INT J HEAT MASS TRAN, V48, P731
  19. PRIGOGINE I, 1946, EXPERIENTIA, V2, P451, DOI 10.1007/BF02153597
  20. Rahman MA, 2007, THERM SCI, V11, P75, DOI 10.2298/TSCI0701075R
  21. Schrodinger E., 1944, WHAT IS LIFE PHYS AS
  22. Silva C, 2008, ENTROPY, V10, P100, DOI 10.3390/entropy-e10020100
  23. Silva C, 2009, J THERMODYN, V2009, P1
  24. STOWARD PJ, 1962, NATURE, V194, P977, DOI 10.1038/194977a0
  25. Wissler EH., 1985, HEAT TRANSFER MED BI, P325
  26. ZOTIN AI, 1967, J THEOR BIOL, V17, P57, DOI 10.1016/0022-5193(67)90020-3