Pulmonary and systemic involvement in COVID-19 patients assessed with ultrasound-guided minimally invasive autopsy

Carregando...
Imagem de Miniatura
Citações na Scopus
245
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Citação
HISTOPATHOLOGY, v.77, n.2, p.186-197, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Aims Brazil ranks high in the number of coronavirus disease 19 (COVID-19) cases and the COVID-19 mortality rate. In this context, autopsies are important to confirm the disease, determine associated conditions, and study the pathophysiology of this novel disease. The aim of this study was to assess the systemic involvement of COVID-19. In order to follow biosafety recommendations, we used ultrasound-guided minimally invasive autopsy (MIA-US), and we present the results of 10 initial autopsies. Methods and results We used MIA-US for tissue sampling of the lungs, liver, heart, kidneys, spleen, brain, skin, skeletal muscle and testis for histology, and reverse transcription polymerase chain reaction to detect severe acute respiratory syndrome coronavirus 2 RNA. All patients showed exudative/proliferative diffuse alveolar damage. There were intense pleomorphic cytopathic effects on the respiratory epithelium, including airway and alveolar cells. Fibrinous thrombi in alveolar arterioles were present in eight patients, and all patients showed a high density of alveolar megakaryocytes. Small thrombi were less frequently observed in the glomeruli, spleen, heart, dermis, testis, and liver sinusoids. The main systemic findings were associated with comorbidities, age, and sepsis, in addition to possible tissue damage due to the viral infection, such as myositis, dermatitis, myocarditis, and orchitis. Conclusions MIA-US is safe and effective for the study of severe COVID-19. Our findings show that COVID-19 is a systemic disease causing major events in the lungs and with involvement of various organs and tissues. Pulmonary changes result from severe epithelial injury and microthrombotic vascular phenomena. These findings indicate that both epithelial and vascular injury should be addressed in therapeutic approaches.
Palavras-chave
autopsy, COVID-19, diffuse alveolar damage, lung pathology, minimally invasive autopsy, SARS-CoV-2
Referências
  1. Barton LM, 2020, AM J CLIN PATHOL, V153, P725, DOI [10.1093/AJCP/AQAA062, 10.1093/ajcp/aqaa062]
  2. Centers for Disease Control and Prevention-Coronavirus Disease 2019 (COVID-19), INT GUID COLL HANDL
  3. Centers for Disease Control and Prevention-Coronavirus Disease 2019 (COVID-19), COLL SUBM POSTM SPEC
  4. Chen J, 2010, J VIROL, V84, P1289, DOI 10.1128/JVI.01281-09
  5. Corman VM, 2020, EUROSURVEILLANCE, V25, P23, DOI 10.2807/1560-7917.ES.2020.25.3.2000045
  6. D'Atri LP, 2015, J THROMB HAEMOST, V13, P839, DOI 10.1111/jth.12842
  7. Dolhnikoff M, 2020, J THROMB HAEMOST, V18, P1517, DOI 10.1111/jth.14844
  8. Duarte-Neto AN, 2019, PLOS NEGLECT TROP D, V13, DOI 10.1371/journal.pntd.0007625
  9. Farina J, 2002, VIRCHOWS ARCH, V440, P635, DOI 10.1007/s00428-002-0607-z
  10. Fox SE, 2020, LANCET RESP MED
  11. Gralinski LE, 2013, MBIO, V4, DOI 10.1128/mBio.00271-13
  12. Hanley B, 2020, J CLIN PATHOL, V73, P239, DOI 10.1136/jclinpath-2020-206522
  13. Inciardi RM, 2020, JAMA CARDIOL, V5, P819, DOI 10.1001/jamacardio.2020.1096
  14. Li K, 2016, J INFECT DIS, V213, P712, DOI 10.1093/infdis/jiv499
  15. Lighter Jennifer, 2020, Clin Infect Dis, V71, P896, DOI 10.1093/cid/ciaa415
  16. Lillicrap D, 2020, J THROMB HAEMOST, V18, P786, DOI 10.1111/jth.14781
  17. Lucas SB, 2012, AUTOPSY PATHOLOGY SE
  18. Mauad T, 2010, AM J RESP CRIT CARE, V181, P72, DOI 10.1164/rccm.200909-1420OC
  19. Mauri T, 2020, CRIT CARE MED, V48, P1129, DOI 10.1097/CCM.0000000000004386
  20. Ministerio da Saude-Secretaria de Vigilancia em Saude, B EP ESP
  21. Sims AC, 2008, VIRUS RES, V133, P33, DOI 10.1016/j.virusres.2007.03.013
  22. Tang N, 2020, J THROMB HAEMOST, V18, P1094, DOI 10.1111/jth.14817
  23. Teoh KT, 2010, MOL BIOL CELL, V21, P3838, DOI 10.1091/mbc.E10-04-0338
  24. Tian SF, 2020, MODERN PATHOL, V33, P1007, DOI 10.1038/s41379-020-0536-x
  25. Tian SF, 2020, J THORAC ONCOL, V15, P700, DOI 10.1016/j.jtho.2020.02.010
  26. Varga Z, 2020, LANCET, V395, P1417, DOI 10.1016/S0140-6736(20)30937-5
  27. Wagensveld IM, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0219291
  28. Wang WL, 2020, JAMA-J AM MED ASSOC, V323, P1843, DOI 10.1001/jama.2020.3786
  29. WHO, 101 WHO
  30. Xu J, 2006, BIOL REPROD, V74, P410, DOI 10.1095/biolreprod.105.044776
  31. Xu Z, 2020, LANCET RESP MED, V8, P420, DOI 10.1016/S2213-2600(20)30076-X
  32. Yao XH, 2020, ZHONGHUA BING LI XUE, V49, P411, DOI 10.3760/CMA.J.CN112151-20200312-00193
  33. Zhang HL, 2020, ANN INTERN MED, V172, P629, DOI 10.7326/M20-0533
  34. Zhang Y, 2020, Zhonghua Xue Ye Xue Za Zhi, V41, pE006, DOI [10.3760/cma.j.issn.0253-2727.2020.008, 10.3760/cma.j.issn.0253-2727.2020.0006]
  35. Zhou F, 2020, LANCET, V395, P1054, DOI 10.1016/S0140-6736(20)30566-3