Comparison of antibody repertories against Staphylococcus aureus in healthy and infected dairy cows with a distinct mastitis history and vaccinated with a polyvalent mastitis vaccine

Carregando...
Imagem de Miniatura
Citações na Scopus
12
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCIENCE INC
Autores
CUNHA, A. F.
ANDRADE, H. M.
SOUZA, F. N.
FIALHO JUNIOR, L. C.
ROSA, D. L. S. O.
GIDLUND, M.
BRITO, M. A. V. P.
GUIMARAES, A. S.
Citação
JOURNAL OF DAIRY SCIENCE, v.103, n.5, p.4588-4605, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Staphylococcus aureus is one of the pathogens most frequently isolated from cases of mastitis worldwide. To decrease the effect of S. aureus mastitis in dairy farming, alternative strategies for controlling mastitis are needed that depend on a better knowledge of cowto-cow variations in S. aureus antibody production. The present study sought to explore the diversity of S. aureus antibodies produced by dairy cows with a distinct mastitis history and vaccinated with a polyvalent mastitis vaccine. We obtained protein extracts from S. aureus isolates derived from persistent subclinical mastitis. Proteins were fractionated using 2-dimensional gel electrophoresis and Western blotting. Then, Western blotting membranes were exposed to sera from 24 dairy cows that had been divided into the following groups: vaccinated dairy cows that were infected with S. aureus, further subdivided according to whether they (a) remained infected by S. aureus or (b) recovered from the intramammary infection; unvaccinated dairy cows infected with S. aureus; and vaccinated healthy dairy cows with no history of S. aureus mastitis. Proteins found to be reactive by Western blot were identified by mass spectrometry (MALDI/TOF-TOF). Our most important finding was that F0F1 ATP synthase subunit a, succinyl-diaminopimelate desuccinylase, and cysteinyl-tRNA synthetase were potential candidate proteins for the prevention of S. aureus mastitis. This study strengthens the notion that variations among animals should not be ignored and shows that the heterogeneity of antibody production against anti-staphylococcal antigens in animals may enable the identification of new immunotherapy targets.
Palavras-chave
Staphylococcus aureus, intramammary infection, serological proteome analysis, immunoproteomics, vaccine
Referências
  1. Anderson AS, 2012, HUM VACC IMMUNOTHER, V8, P1585, DOI 10.4161/hv.21872
  2. Angeles Tormo M, 2007, MICROBIOL-SGM, V153, P1702, DOI 10.1099/mic.0.2006/005744-0
  3. Becker P, 2001, APPL ENVIRON MICROB, V67, P2958, DOI 10.1128/AEM.67.7.2958-2965.2001
  4. BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
  5. Burlak C, 2007, CELL MICROBIOL, V9, P1172, DOI 10.1111/j.1462-5822.2006.00858.x
  6. Cucarella C, 2004, INFECT IMMUN, V72, P2177, DOI 10.1128/IAI.72.4.2177-2185.2004
  7. De Vliegher S, 2012, J DAIRY SCI, V95, P1025, DOI 10.3168/jds.2010-4074
  8. Dryla A, 2005, CLIN DIAGN LAB IMMUN, V12, P387, DOI 10.1128/CDLI.12.3.387-398.2005
  9. Fabres-Klein MH, 2013, WORLD J MICROB BIOT, V29, P1155, DOI 10.1007/s11274-013-1274-8
  10. Foster TJ, 2014, NAT REV MICROBIOL, V12, P49, DOI 10.1038/nrmicro3161
  11. Fox LK, 2000, J VET MED B, V47, P517, DOI 10.1046/j.1439-0450.2000.00379.x
  12. Francius G, 2008, J BACTERIOL, V190, P7904, DOI 10.1128/JB.01116-08
  13. Fujisawa M, 2010, J BIOL CHEM, V285, P32105, DOI 10.1074/jbc.M110.165084
  14. Giersing BK, 2016, VACCINE, V34, P2962, DOI 10.1016/j.vaccine.2016.03.110
  15. Glowalla E, 2009, INFECT IMMUN, V77, P2719, DOI 10.1128/IAI.00617-08
  16. Halasa T, 2009, LIVEST SCI, V124, P295, DOI 10.1016/j.livsci.2009.02.019
  17. Henderson B, 2013, CURR TOP MICROBIOL, V358, P155, DOI 10.1007/82_2011_188
  18. Holtfreter S, 2010, INT J MED MICROBIOL, V300, P176, DOI 10.1016/j.ijmm.2009.10.002
  19. Hospido A, 2005, SCI TOTAL ENVIRON, V343, P71, DOI 10.1016/j.scitotenv.2004.10.006
  20. Islam N, 2014, PROTEOME SCI, V12, DOI 10.1186/1477-5956-12-21
  21. Le Marechal C, 2009, J MICROBIOL METH, V79, P131, DOI 10.1016/j.mimet.2009.08.017
  22. Le Marechal C, 2013, VET MICROBIOL, V164, P150, DOI 10.1016/j.vetmic.2013.01.013
  23. Le Marechal C, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0027354
  24. Lemke A, 2016, MUCOSAL IMMUNOL, V9, P83, DOI 10.1038/mi.2015.38
  25. McDougal LK, 2003, J CLIN MICROBIOL, V41, P5113, DOI 10.1128/JCM.41.11.5113-5120.2003
  26. Mehrotra M, 2000, J CLIN MICROBIOL, V38, P1032, DOI 10.1128/JCM.38.3.1032-1035.2000
  27. Misra N, 2018, J DAIRY SCI, V101, P6296, DOI 10.3168/jds.2017-14040
  28. Moura GS, 2018, J DAIRY SCI, V101, P7804, DOI 10.3168/jds.2017-13361
  29. Nagaev I, 2001, MOL MICROBIOL, V40, P433, DOI 10.1046/j.1365-2958.2001.02389.x
  30. Nandakumar R, 2005, J PROTEOME RES, V4, P250, DOI 10.1021/pr049866k
  31. NEUHOFF V, 1988, ELECTROPHORESIS, V9, P255, DOI 10.1002/elps.1150090603
  32. Nocek BP, 2010, J MOL BIOL, V397, P617, DOI 10.1016/j.jmb.2010.01.062
  33. Oliver S. P., 2004, MICROBIOLOGICAL PROC
  34. Paape MJ, 2003, VET RES, V34, P597, DOI 10.1051/vetres:2003024
  35. Patton TG, 2005, MOL MICROBIOL, V56, P1664, DOI 10.1111/j.1365-2958.2005.04653.x
  36. Pereira UP, 2011, VET MICROBIOL, V148, P117, DOI 10.1016/j.vetmic.2010.10.003
  37. Pires SD, 2014, J PROTEOME RES, V13, P1860, DOI 10.1021/pr400923g
  38. Rainard P, 2018, TRANSBOUND EMERG DIS, V65, P149, DOI 10.1111/tbed.12698
  39. Richardson EJ, 2018, NAT ECOL EVOL, V2, P1468, DOI 10.1038/s41559-018-0617-0
  40. Roychowdhury A, 2011, ACTA CRYSTALLOGR F, V67, P668, DOI 10.1107/S1744309111007391
  41. Rueckert C, 2012, PLOS PATHOG, V8, DOI 10.1371/journal.ppat.1003001
  42. Ruegg PL, 2017, J DAIRY SCI, V100, P10381, DOI 10.3168/jds.2017-13023
  43. Salgado-Pabon W, 2014, NAT REV MICROBIOL, V12, P585, DOI 10.1038/nrmicro3308
  44. Vieira HGS, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0097526
  45. Sasaki T, 2010, J CLIN MICROBIOL, V48, P765, DOI 10.1128/JCM.01232-09
  46. Schepers AJ, 1997, J DAIRY SCI, V80, P1833, DOI 10.3168/jds.S0022-0302(97)76118-6
  47. Schukken YH, 2014, J DAIRY SCI, V97, P5250, DOI 10.3168/jds.2014-8008
  48. Schukken YH, 2003, VET RES, V34, P579, DOI 10.1051/vetres:2003028
  49. Seyffert N, 2012, VET MICROBIOL, V157, P439, DOI 10.1016/j.vetmic.2012.01.016
  50. Souza FN, 2019, RES VET SCI, V126, P20, DOI 10.1016/j.rvsc.2019.08.014
  51. Souza FN, 2016, PESQUI VET BRASIL, V36, P811, DOI [10.1590/s0100-736x2016000900004, 10.1590/S0100-736X2016000900004]
  52. Tedeschi G, 2009, VET MICROBIOL, V134, P388, DOI 10.1016/j.vetmic.2008.08.019
  53. Valle J, 2007, J BACTERIOL, V189, P2886, DOI 10.1128/JB.01767-06
  54. van Belkum A, 2007, CLIN MICROBIOL INFEC, V13, P1, DOI 10.1111/j.1469-0691.2007.01786.x
  55. Vytvytska O, 2002, PROTEOMICS, V2, P580, DOI 10.1002/1615-9861(200205)2:5<580::AID-PROT580>3.0.CO;2-G
  56. Yu XP, 2011, WORLD J MICROB BIOT, V27, P897, DOI 10.1007/s11274-010-0532-2