Airborne microplastics and SARS-CoV-2 in total suspended particles in the area surrounding the largest medical centre in Latin America

Carregando...
Imagem de Miniatura
Citações na Scopus
42
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCI LTD
Autores
AMATO-LOURENCO, Luis Fernando
GALVA, Luciana dos Santos
MORALLES, Fernando Negri
LOMBARDI, Suzette Cleuza Ferreira Spina
ANDO, Romulo Augusto
Citação
ENVIRONMENTAL POLLUTION, v.292, article ID 118299, 8p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Microplastics (MPs) have been reported in the outdoor/indoor air of urban centres, raising health concerns due to the potential for human exposure. Since aerosols are considered one of the routes of Coronavirus disease 2019 (COVID-19) transmission and may bind to the surface of airborne MPs, we hypothesize that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could be associated with the levels of MPs in the air. Our goal was to quantify the SARS-CoV-2 RNA and MPs present in the total suspended particles (TSP) collected in the area surrounding the largest medical centre in Latin America and to elucidate a possible association among weather variables, MPs, and SARS-CoV-2 in the air. TSP were sampled from three outdoor locations in the areas surrounding a medical centre. MPs were quantified and measured under a fluorescence microscope, and their polymeric composition was characterized by Fourier transform infrared (FT-IR) microspectroscopy coupled with attenuated total reflectance (ATR). The viral load of SARS-CoV-2 was quantified by an in-house real-time PCR assay. A generalized linear model (GzLM) was employed to evaluate the effect of the SARS-CoV-2 quantification on MPs and weather variables. TSP samples tested positive for SARS-CoV-2 in 22 out of 38 samples at the three sites. Polyester was the most frequent polymer (80%) found in the samples. The total amount of MPs was positively associated with the quantification of SARS-CoV-2 envelope genes and negatively associated with weather variables (temperature and relative humidity). Our findings show that SARS-CoV-2 aerosols may bind to TSP, such as MPs, and facilitate virus entry into the human body.
Palavras-chave
Airborne microplastic, SARS-CoV-2 RNA, Public health, Aerosols
Referências
  1. Abdeldayem O.M., 2022, VIRAL OUTBREAKS DETE, V803
  2. Akhbarizadeh R, 2021, MAR POLLUT BULL, V168, DOI 10.1016/j.marpolbul.2021.112386
  3. Akhbarizadeh R, 2021, ENVIRON RES, V192, DOI 10.1016/j.envres.2020.110339
  4. Allen S, 2019, NAT GEOSCI, V12, P339, DOI 10.1038/s41561-019-0335-5
  5. Amato-Lourenco LF, 2020, SCI TOTAL ENVIRON, V749, DOI 10.1016/j.scitotenv.2020.141676
  6. Biryukov J, 2020, MSPHERE, V5, DOI 10.1128/mSphere.00441-20
  7. Carraturo F, 2020, ENVIRON POLLUT, V265, DOI 10.1016/j.envpol.2020.115010
  8. CDC Centers for Disease Control and Prevention, 2021, NOV COR 2019 NCOV RE
  9. CET Companhia de Engenharia de Trafego, 2020, MOB SIST VIAR PRINC
  10. CETESB, 2020, QUAL AR EST SAO PAUL
  11. Chirizzi D, 2021, ENVIRON INT, V146, DOI 10.1016/j.envint.2020.106255
  12. Coccia M, 2021, ATMOS POLLUT RES, V12, P437, DOI 10.1016/j.apr.2020.10.002
  13. Corman VM, 2020, EUROSURVEILLANCE, V25, P23, DOI 10.2807/1560-7917.ES.2020.25.3.2000045
  14. CVE, 2021, SIT EP B DIAR COVID
  15. Dris R, 2015, ENVIRON CHEM, V12, P592, DOI 10.1071/EN14167
  16. De-la-Torre GE, 2021, SCI TOTAL ENVIRON, V754, DOI 10.1016/j.scitotenv.2020.142216
  17. Erni-Cassola G, 2017, ENVIRON SCI TECHNOL, V51, P13641, DOI 10.1021/acs.est.7b04512
  18. Fiocruz Fundacao Oswaldo Cruz, 2021, MONITORACOVID 19
  19. Foulon V, 2016, ENVIRON SCI TECHNOL, V50, P10988, DOI 10.1021/acs.est.6b02720
  20. Gralinski LE, 2020, VIRUSES-BASEL, V12, DOI 10.3390/v12020135
  21. Hartmann NB, 2017, INTEGR ENVIRON ASSES, V13, P488, DOI 10.1002/ieam.1904
  22. Hidalgo-Ruz V, 2012, ENVIRON SCI TECHNOL, V46, P3060, DOI 10.1021/es2031505
  23. Jiang WJ, 2015, NAT PROTOC, V10, P768, DOI 10.1038/nprot.2015.046
  24. Joint FAO/WHO Expert Committee on Food Additives, 2006, World Health Organ Tech Rep Ser, V930, P1
  25. Levermore JM, 2020, ANAL CHEM, V92, P8732, DOI 10.1021/acs.analchem.9b05445
  26. Linillos-Pradillo B, 2021, ENVIRON RES, V195, DOI 10.1016/j.envres.2021.110863
  27. Liu K, 2019, SCI TOTAL ENVIRON, V675, P462, DOI 10.1016/j.scitotenv.2019.04.110
  28. Liu Y, 2020, NATURE, V582, P557, DOI 10.1038/s41586-020-2271-3
  29. Ma YL, 2020, SCI TOTAL ENVIRON, V724, DOI 10.1016/j.scitotenv.2020.138226
  30. Mammo FK, 2020, SCI TOTAL ENVIRON, V743, DOI 10.1016/j.scitotenv.2020.140518
  31. MCCULLAGH P, 1984, EUR J OPER RES, V16, P285, DOI 10.1016/0377-2217(84)90282-0
  32. O'Callaghan-Gordo C, 2020, ENVIRON RES, V187, DOI 10.1016/j.envres.2020.109683
  33. Pan M, 2019, J APPL MICROBIOL, V127, P1596, DOI 10.1111/jam.14278
  34. Passos RG, 2021, ENVIRON RES, V195, DOI 10.1016/j.envres.2021.110808
  35. Pathan SI, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12187255
  36. Piana A, 2021, MSPHERE, V6, DOI 10.1128/mSphere.01070-20
  37. Qu GB, 2020, ENVIRON SCI TECHNOL, V54, P3730, DOI 10.1021/acs.est.0c01102
  38. Ramsperger AFRM, 2020, SCI ADV, V6, DOI 10.1126/sciadv.abd1211
  39. Rochman CM, 2019, ENVIRON TOXICOL CHEM, V38, P703, DOI 10.1002/etc.4371
  40. Sajadi MM, 2020, JAMA NETW OPEN, V3, DOI 10.1001/jamanetworkopen.2020.11834
  41. Saldiva PHN, 2001, REV BRAS EPIDEMIOL, V4
  42. SEADE, 2019, SEADE IND EST SAO PA
  43. Setti L, 2020, ENVIRON RES, V188, DOI 10.1016/j.envres.2020.109754
  44. Sharma A, 2020, ENVIRON INT, V139, DOI 10.1016/j.envint.2020.105671
  45. Tamminga M., 2017, SDRP J EARTH SCI ENV, V2, DOI [10.15436/jeses.2.2.1, DOI 10.15436/JESES.2.2.1]
  46. van Doremalen N, 2020, NEW ENGL J MED, V382, P1564, DOI 10.1056/NEJMc2004973
  47. World Health Organization (WHO), 2020, COR DIS COVID 19 IS
  48. Wright SL, 2020, ENVIRON INT, V136, DOI 10.1016/j.envint.2019.105411
  49. Wu F, 2020, NATURE, V579, P265, DOI 10.1038/s41586-020-2008-3
  50. Zhu YJ, 2020, SCI TOTAL ENVIRON, V727, DOI 10.1016/j.scitotenv.2020.138704
  51. Zuo YY, 2020, ACS NANO, V14, P16502, DOI 10.1021/acsnano.0c08484