High stretch induces endothelial dysfunction accompanied by oxidative stress and actin remodeling in human saphenous vein endothelial cells

Carregando...
Imagem de Miniatura
Citações na Scopus
16
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE RESEARCH
Citação
SCIENTIFIC REPORTS, v.11, n.1, article ID 13493, 14p, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The rate of the remodeling of the arterialized saphenous vein conduit limits the outcomes of coronary artery bypass graft surgery (CABG), which may be influenced by endothelial dysfunction. We tested the hypothesis that high stretch (HS) induces human saphenous vein endothelial cell (hSVEC) dysfunction and examined candidate underlying mechanisms. Our results showed that in vitro HS reduces NO bioavailability, increases inflammatory adhesion molecule expression (E-selectin and VCAM1) and THP-1 cell adhesion. HS decreases F-actin in hSVECs, but not in human arterial endothelial cells, and is accompanied by G-actin and cofilin's nuclear shuttling and increased reactive oxidative species (ROS). Pre-treatment with the broad-acting antioxidant N-acetylcysteine (NAC) supported this observation and diminished stretch-induced actin remodeling and inflammatory adhesive molecule expression. Altogether, we provide evidence that increased oxidative stress and actin cytoskeleton remodeling play a role in HS-induced saphenous vein endothelial cell dysfunction, which may contribute to predisposing saphenous vein graft to failure.
Palavras-chave
Referências
  1. Ali MH, 2002, CRIT CARE MED, V30, pS198, DOI 10.1097/00003246-200205001-00005
  2. Ali MH, 2006, AM J PHYSIOL-LUNG C, V291, pL38, DOI 10.1152/ajplung.00287.2004
  3. Allaire E, 1997, ANN THORAC SURG, V63, P582
  4. Arciniegas E., 2007, AM J PHYSIOL-LUNG C, V293, pL1, DOI 10.1152/ajplung.00378.2006
  5. Barauna VG, 2013, BIOCHEM BIOPH RES CO, V441, P713, DOI 10.1016/j.bbrc.2013.10.108
  6. BERCELI SA, 1991, J VASC SURG, V13, P336, DOI 10.1016/0741-5214(91)90227-L
  7. Birukov KG, 2003, AM J PHYSIOL-LUNG C, V285, pL785, DOI 10.1152/ajplung.00336.2002
  8. Birukova AA, 2006, AM J PATHOL, V168, P1749, DOI 10.2353/ajpath.2006.050431
  9. Birukova AA, 2008, EXP CELL RES, V314, P3466, DOI 10.1016/j.yexcr.2008.09.003
  10. Carneiro AP, 2017, BIOCHEM BIOPH RES CO, V483, P75, DOI 10.1016/j.bbrc.2017.01.003
  11. Casey PJ, 2001, J VASC SURG, V33, P1199, DOI 10.1067/mva.2001.115571
  12. Cevallos M, 2006, DIFFERENTIATION, V74, P552, DOI 10.1111/j.1432-0436.2006.00089.x
  13. Chhabra D, 2005, BIOPHYS J, V89, P1902, DOI 10.1529/biophysj.105.062083
  14. Chien S, 2007, AM J PHYSIOL-HEART C, V292, pH1209, DOI 10.1152/ajpheart.01047.2006
  15. Cooley B. C, 2014, SCI TRANSL MED, V6
  16. Davies PF, 2017, J BIOMECH, V50, P3, DOI 10.1016/j.jbiomech.2016.11.017
  17. de Vries MR, 2016, NAT REV CARDIOL, V13, P451, DOI 10.1038/nrcardio.2016.76
  18. Dumanski A, 2007, IN VIVO, V21, P785
  19. Dunn J, 2015, ARTERIOSCL THROM VAS, V35, P1562, DOI 10.1161/ATVBAHA.115.305042
  20. Fang Y, 2019, COMPR PHYSIOL, V9, P873, DOI 10.1002/cphy.c180020
  21. Campos LCG, 2009, CARDIOVASC RES, V83, P140, DOI 10.1093/cvr/cvp108
  22. Gaudino M, 2017, CIRCULATION, V136, P1749, DOI 10.1161/CIRCULATIONAHA.117.027597
  23. Gieni RS, 2009, BIOCHEM CELL BIOL, V87, P283, DOI 10.1139/O08-133
  24. Golledge J, 1997, J CLIN INVEST, V99, P2719, DOI 10.1172/JCI119461
  25. Harris AR, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-19768-9
  26. Huang Z., CARDIOL RES PRACT, V2020
  27. Huot J, 1996, CANCER RES, V56, P273
  28. Huot J, 1997, CIRC RES, V80, P383, DOI 10.1161/01.RES.80.3.383
  29. JOANNIDES R, 1995, CIRCULATION, V91, P1314, DOI 10.1161/01.CIR.91.5.1314
  30. Kanellos G, 2016, J CELL SCI, V129, P3211, DOI 10.1242/jcs.187849
  31. Kiserud T, 2000, J PERINAT MED, V28, P90, DOI 10.1515/JPM.2000.011
  32. Kodama A, 2014, SURG TODAY, V44, P213, DOI 10.1007/s00595-013-0555-z
  33. Krenning G, 2016, STEM CELLS INT, V2016, DOI 10.1155/2016/9762959
  34. Kumari A., 2020, EMBO J, V39, DOI 10.15252/embj.2019104006
  35. Kuo JC, 2013, J CELL MOL MED, V17, P704, DOI 10.1111/jcmm.12054
  36. Lassegue B, 2012, CIRC RES, V110, P1364, DOI 10.1161/CIRCRESAHA.111.243972
  37. Lee J, 2018, BIORXIV, DOI [10.1101/480517, DOI 10.1101/480517]
  38. Lee J, MECH BIOL CONDITIONI, DOI [10.1101/487710, DOI 10.1101/487710]
  39. Lee J, 2013, LAB CHIP, V13, P4573, DOI 10.1039/c3lc50894c
  40. Li FD, 2014, JAMA SURG, V149, P655, DOI 10.1001/jamasurg.2013.5067
  41. Liu SQ, 2000, J BIOMECH ENG-T ASME, V122, P31, DOI 10.1115/1.429625
  42. Liu ZG, 2000, CIRCULATION, V102, P296
  43. Lu HG, 2020, ANN VASC SURG, V64, P303, DOI 10.1016/j.avsg.2019.05.044
  44. Lv Z, 2018, CRIT CARE MED, V46, pE49, DOI 10.1097/CCM.0000000000002799
  45. Mai JT, 2015, CIRC J, V79, P201, DOI 10.1253/circj.CJ-14-0721
  46. Maleszewska M, 2013, IMMUNOBIOLOGY, V218, P443, DOI 10.1016/j.imbio.2012.05.026
  47. Moonen JRAJ, 2015, CARDIOVASC RES, V108, P377, DOI 10.1093/cvr/cvv175
  48. Moore MM, 2001, J BIOMECH, V34, P289, DOI 10.1016/S0021-9290(00)00217-7
  49. Oakes PW, 2014, CURR OPIN CELL BIOL, V30, P68, DOI 10.1016/j.ceb.2014.06.003
  50. Osgood MJ, 2014, J VASC SURG, V60, P202, DOI 10.1016/j.jvs.2013.06.004
  51. Panieri E, 2015, CELL MOL LIFE SCI, V72, P3281, DOI 10.1007/s00018-015-1928-9
  52. Pardali E, 2017, INT J MOL SCI, V18, DOI 10.3390/ijms18102157
  53. Pendleton A, 2003, J BIOL CHEM, V278, P14394, DOI 10.1074/jbc.M206393200
  54. Revenu C, 2004, NAT REV MOL CELL BIO, V5, P635, DOI 10.1038/nrm1437
  55. Riveline D, 2001, J CELL BIOL, V153, P1175, DOI 10.1083/jcb.153.6.1175
  56. Ruiter MS, 2018, FRONT CARDIOVASC MED, V5, DOI 10.3389/fcvm.2018.00020
  57. Shao Y, 2014, INTEGR BIOL-UK, V6, P300, DOI 10.1039/c3ib40223a
  58. Sharili AS, 2016, SCI REP-UK, V6, DOI 10.1038/srep33893
  59. Su YC, 2005, CELL BIOCHEM BIOPHYS, V43, P439, DOI 10.1385/CBB:43:3:439
  60. Sun Q, 2012, CARDIOVASC RES, V94, P144, DOI 10.1093/cvr/cvs024
  61. Sung HJ, 2007, AM J PHYSIOL-CELL PH, V293, pC87, DOI 10.1152/ajpcell.00585.2006
  62. Valdivia A, 2015, CURR PHARM DESIGN, V21, P6009, DOI 10.2174/1381612821666151029112624
  63. Vita JA, 2011, CIRCULATION, V124, pE906, DOI 10.1161/CIRCULATIONAHA.111.078824
  64. Ward AO, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-71781-6
  65. Ward AO, 2017, ATHEROSCLEROSIS, V265, P266, DOI 10.1016/j.atherosclerosis.2017.08.023
  66. Weaver H, 2012, CURR OPIN PHARMACOL, V12, P160, DOI 10.1016/j.coph.2012.01.005
  67. West NEJ, 2001, ARTERIOSCL THROM VAS, V21, P189, DOI 10.1161/01.ATV.21.2.189
  68. Zhang MX, 2019, CELL SIGNAL, V61, P20, DOI 10.1016/j.cellsig.2019.05.005
  69. Zhong CM, 2021, EXP CELL RES, V398, DOI 10.1016/j.yexcr.2020.112402