Effects of local and remote ischemic postconditioning methods on ischemia-reperfusion injury in a young animal model of acute mesenteric ischemia

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
ACTA CIRURGICA BRASILEIRA
Citação
ACTA CIRURGICA BRASILEIRA, v.38, article ID e381323, 10p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Purpose: Acute mesenteric ischemia (AMI) is a condition in pediatric surgery that ranges from intestine necrosis to death. Ischemic postconditioning (IPoC) methods were developed to reduce the damage caused by revascularization. This study aimed to evaluate the efficacy of these methods in an experimental weaning rat model. Methods: Thirty-two 21-day-old Wistar rats were allocated into four groups according to the surgical procedure performed: control, ischemia-reperfusion injury (IRI), local (LIPoC) and remote IPoC (RIPoC). At euthanasia, fragments of the intestine, liver, lungs, and kidneys were submitted to histological, histomorphometric, and molecular analyses. Results: In the duodenum, intestines, and kidneys histological alterations promoted by IRI were reversed by remote postconditioning method. In the distal ileum, the histomorphometric alterations could be reversed by the postconditioning methods with more evident effects promoted by the remote method. The molecular analysis found that the levels of expression of Bax (proapoptotic) and Bcl-XL (antiapoptotic) genes in the intestine were increased by IRI. These alterations were equally reversed by the postconditioning methods, with more evident effects of the remote method. Conclusion: IPoC methods positively reduced the damage caused by IRI in weaning rats.
Palavras-chave
Ischemia, Reperfusion Injury, Ischemic Postconditioning, Antioxidants, Rats
Referências
  1. Belon AR, 2022, J INVEST SURG, V35, P900, DOI 10.1080/08941939.2021.1933274
  2. Belperio JA, 2002, J CLIN INVEST, V110, P1703, DOI 10.1172/JCI200215849
  3. Cheng CH, 2013, TRANSPLANTATION, V95, P559, DOI 10.1097/TP.0b013e31827e6b02
  4. CHIU CJ, 1970, ARCH SURG-CHICAGO, V101, P478
  5. Chu WW, 2015, INT J CLIN EXP PATHO, V8, P6474
  6. Dorsa RC, 2015, REV BRAS CIR CARDIOV, V30, P353, DOI 10.5935/1678-9741.20150005
  7. Leal AJG, 2015, CLINICS, V70, P126, DOI 10.6061/clinics/2015(02)10
  8. Jeican Ionut Isaia, 2016, Clujul Med, V89, P347, DOI 10.15386/cjmed-600
  9. Kerendi F, 2005, BASIC RES CARDIOL, V100, P404, DOI 10.1007/s00395-005-0539-2
  10. Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
  11. dos Santos CHM, 2009, REV BRAS CIR CARDIOV, V24, P150, DOI 10.1590/S0102-76382009000200010
  12. MURRY CE, 1986, CIRCULATION, V74, P1124, DOI 10.1161/01.CIR.74.5.1124
  13. Onody Peter, 2012, Magy Seb, V65, P222, DOI 10.1556/MaSeb.65.2012.4.9
  14. PARKS DA, 1986, AM J PHYSIOL, V250, pG749, DOI 10.1152/ajpgi.1986.250.6.G749
  15. Racusen Lorraine C, 2004, Am J Transplant, V4, P1562, DOI 10.1111/j.1600-6143.2004.00585.x
  16. Ren CC, 2009, BRAIN RES, V1288, P88, DOI 10.1016/j.brainres.2009.07.029
  17. Scheuer Peter J, 2002, Clin Liver Dis, V6, P335, DOI 10.1016/S1089-3261(02)00009-0
  18. Sengul I, 2013, KAOHSIUNG J MED SCI, V29, P119, DOI 10.1016/j.kjms.2012.08.021
  19. Tahir M, 2018, FRONT MOL BIOSCI, V5, DOI 10.3389/fmolb.2018.00089
  20. Wen SH, 2013, SURGERY, V153, P555, DOI 10.1016/j.surg.2012.09.017
  21. Xu JF, 2015, CRIT CARE MED, V43, pE12, DOI 10.1097/CCM.0000000000000684
  22. Yang M, 2016, GASTROENT RES PRACT, V2016, DOI 10.1155/2016/2604032
  23. Yasojima EY, 2021, ACTA CIR BRAS, V36, DOI [10.1590/ACB360101, 10.1590/acb360101]
  24. Zhao ZQ, 2003, AM J PHYSIOL-HEART C, V285, pH579, DOI 10.1152/ajpheart.01064.2002