Multimodality imaging methods and systemic biomarkers in classical low-flow low-gradient aortic stenosis: Key findings for risk stratification

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Citação
FRONTIERS IN CARDIOVASCULAR MEDICINE, v.10, article ID 1149613, 12p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
ObjectivesThe aim of the present study is to assess multimodality imaging findings according to systemic biomarkers, high-sensitivity troponin I (hsTnI) and B-type natriuretic peptide (BNP) levels, in low-flow, low-gradient aortic stenosis (LFLG-AS).BackgroundElevated levels of BNP and hsTnI have been related with poor prognosis in patients with LFLG-AS.MethodsProspective study with LFLG-AS patients that underwent hsTnI, BNP, coronary angiography, cardiac magnetic resonance (CMR) with T1 mapping, echocardiogram and dobutamine stress echocardiogram. Patients were divided into 3 groups according to BNP and hsTnI levels: Group 1 (n = 17) when BNP and hsTnI levels were below median [BNP < 1.98 fold upper reference limit (URL) and hsTnI < 1.8 fold URL]; Group 2 (n = 14) when BNP or hsTnI were higher than median; and Group 3 (n = 18) when both hsTnI and BNP were higher than median.Results49 patients included in 3 groups. Clinical characteristics (including risk scores) were similar among groups. Group 3 patients had lower valvuloarterial impedance (P = 0.03) and lower left ventricular ejection fraction (P = 0.02) by echocardiogram. CMR identified a progressive increase of right and left ventricular chamber from Group 1 to Group 3, and worsening of left ventricular ejection fraction (EF) (40 [31-47] vs. 32 [29-41] vs. 26 [19-33]%; p < 0.01) and right ventricular EF (62 [53-69] vs. 51 [35-63] vs. 30 [24-46]%; p < 0.01). Besides, there was a marked increase in myocardial fibrosis assessed by extracellular volume fraction (ECV) (28.4 [24.8-30.7] vs. 28.2 [26.9-34.5] vs. 31.8 [28.9-35.5]%; p = 0.03) and indexed ECV (iECV) (28.7 [21.2-39.1] vs. 28.8 [25.4-39.9] vs. 44.2 [36.4-51.2] ml/m(2), respectively; p < 0.01) from Group 1 to Group 3.ConclusionsHigher levels of BNP and hsTnI in LFLG-AS patients are associated with worse multi-modality evidence of cardiac remodeling and fibrosis.
Palavras-chave
multimodality imaging, low-flow low-gradient aortic stenosis, B-type natriuretic peptide, high-sensitivity troponin I, biomarkers
Referências
  1. Auensen A, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0179304
  2. Azevedo CF, 2010, J AM COLL CARDIOL, V56, P278, DOI 10.1016/j.jacc.2009.12.074
  3. Barbieri F, 2019, AM J CARDIOL, V124, P1932, DOI 10.1016/j.amjcard.2019.09.014
  4. Baumgartner H, 2017, J AM SOC ECHOCARDIOG, V30, P372, DOI [10.1016/j.echo.2017.02.009, 10.1093/ehjci/jew335]
  5. Bergler-Klein J, 2007, CIRCULATION, V115, P2848, DOI 10.1161/CIRCULATIONAHA.106.654210
  6. Burwash IG, 2008, HEART, V94, P1627, DOI 10.1136/hrt.2007.135475
  7. Chambers J, 2006, HEART, V92, P554, DOI 10.1136/hrt.2005.079038
  8. Chin CWL, 2017, JACC-CARDIOVASC IMAG, V10, P1320, DOI 10.1016/j.jcmg.2016.10.007
  9. Chin CWL, 2014, EUR HEART J, V35, P2312, DOI 10.1093/eurheartj/ehu189
  10. Clavel MA, 2008, CIRCULATION, V118, pS234, DOI 10.1161/CIRCULATIONAHA.107.757427
  11. Clavel MA, 2017, JACC-CARDIOVASC IMAG, V10, P185, DOI 10.1016/j.jcmg.2017.01.002
  12. Dahou A, 2018, JACC-CARDIOVASC IMAG, V11, P939, DOI 10.1016/j.jcmg.2017.06.018
  13. Dweck MR, 2011, J AM COLL CARDIOL, V58, P1271, DOI 10.1016/j.jacc.2011.03.064
  14. Everett RJ, 2020, J AM COLL CARDIOL, V75, P304, DOI 10.1016/j.jacc.2019.11.032
  15. Fukui M, 2022, EUR HEART J-CARD IMG, V24, P46, DOI 10.1093/ehjci/jeac089
  16. Herrmann HC, 2013, CIRCULATION, V127, P2316, DOI 10.1161/CIRCULATIONAHA.112.001290
  17. Lang RM, 2015, EUR HEART J-CARD IMG, V16, P233, DOI 10.1093/ehjci/jev014
  18. Martinez-Naharro A, 2019, JACC-CARDIOVASC IMAG, V12, P810, DOI 10.1016/j.jcmg.2018.02.006
  19. Messroghli DR, 2018, J CARDIOVASC MAGN R, V20, DOI [10.1186/s12968-017-0408-9, 10.1186/s12968-017-0389-8]
  20. Monin JL, 2003, CIRCULATION, V108, P319, DOI 10.1161/01.CIR.0000079171.43055.46
  21. Nishimura RA, 2002, CIRCULATION, V106, P809, DOI 10.1161/01.CIR.0000025611.21140.34
  22. Peeters FECM, 2019, OPEN HEART, V6, DOI 10.1136/openhrt-2019-001040
  23. Petersen SE, 2017, J CARDIOVASC MAGN R, V19, DOI 10.1186/s12968-017-0327-9
  24. Quere JP, 2006, CIRCULATION, V113, P1738, DOI 10.1161/CIRCULATIONAHA.105.568824
  25. Ribeiro HB, 2018, J AM COLL CARDIOL, V71, P1297, DOI 10.1016/j.jacc.2018.01.054
  26. Rosa VEE, 2019, CIRC-CARDIOVASC IMAG, V12, DOI 10.1161/CIRCIMAGING.118.008353
  27. Teske AJ., 2007, CARDIOVASC ULTRASOUN, V5, P27, DOI [10.1186/1476-7120-5-27, DOI 10.1186/1476-7120-5-27]
  28. Tribouilloy C, 2009, J AM COLL CARDIOL, V53, P1865, DOI 10.1016/j.jacc.2009.02.026
  29. Ueyama H, 2021, JACC-CARDIOVASC INTE, V14, P1481, DOI 10.1016/j.jcin.2021.04.038
  30. Vahanian A, 2022, EUR HEART J, V43, P561, DOI [10.1093/eurheartj/ehab395, 10.1016/j.rec.2022.05.006, 10.1093/ejcts/ezab389]
  31. Weber M, 2005, EUR HEART J, V26, P1023, DOI 10.1093/eurheartj/ehi236
  32. West AM, 2010, CURR PROB CARDIOLOGY, V35, P176, DOI 10.1016/j.cpcardiol.2009.12.002
  33. Otto Catherine M, 2021, Circulation, V143, pe35, DOI [10.1016/j.jacc.2020.11.035, 10.1161/CIR.0000000000000932]