Decreased glycolytic metabolism in non-compaction cardiomyopathy by F-18-fluoro-2-deoxyglucose positron emission tomography: new insights into pathophysiological mechanisms and clinical implications

Carregando...
Imagem de Miniatura
Citações na Scopus
5
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
OXFORD UNIV PRESS
Citação
EUROPEAN HEART JOURNAL-CARDIOVASCULAR IMAGING, v.18, n.8, p.915-921, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Aims The pathophysiological mechanisms of left ventricular non-compaction cardiomyopathy (LVNC) remain controversial. This study performed combined F-18-fluoro-2-deoxyglucose dynamic positron emission tomography (FDG-PET) and 99mTc-sestamibi single-photon emission computed tomography (SPECT) studies to evaluate myocardial glucose metabolism and perfusion in patients with LVNC and their clinical implications. Methods and results Thirty patients (41 +/- 12 years, 53% male) with LVNC, diagnosed by cardiovascular magnetic resonance (CMR) criteria, and eight age-matched healthy controls (42 +/- 12 years, 50% male) were prospectively recruited to undergo FDG-PET with measurement of the myocardial glucose uptake rate (MGU) and SPECT to investigate perfusion-metabolism patterns. Patients with LVNC had lower global MGU compared with that in controls (36.9 +/- 8.8 vs. 44.6 +/- 5.4 mu mol/min/100 g, respectively, P = 0.02). Of 17 LV segments, MGU levels were significantly reduced in 8, and also a reduction was observed when compacted segments from LVNC were compared with the segments from control subjects (P < 0.001). Perfusion defects were also found in 15 (50%) patients (45 LV segments: 64.4% match, and 35.6% mismatch perfusion-metabolism pattern). Univariate and multivariate analyses showed that beta-blocker therapy was associated with increased MGU (beta coefficient = 10.1, P = 0.008). Moreover, a gradual increase occurred in MGU across the beta-blocker dose groups (P for trend = 0.01). Conclusion The reduction of MGU documented by FDG-PET in LVNC supports the hypothesis that a cellular metabolic pathway may play a role in the pathophysiology of LVNC. The beneficial effect of beta-blocker mediating myocardial.
Palavras-chave
Referências
  1. Abdurrachim D, 2015, CARDIOVASC RES, V106, P194, DOI 10.1093/cvr/cvv105
  2. Abozguia K, 2006, NAT CLIN PRACT CARD, V3, P490, DOI 10.1038/ncpcardio0583
  3. Ashrith G, 2014, J CARDIOVASC MAGN R, V16, DOI 10.1186/s12968-014-0064-2
  4. Davila-Roman VG, 2002, J AM COLL CARDIOL, V40, P271, DOI 10.1016/S0735-1097(02)01967-8
  5. Gao XJ, 2014, J NUCL CARDIOL, V21, P633, DOI 10.1007/s12350-014-9890-8
  6. GONG G, 2015, SCIENCE NEW YORK NY, V0350
  7. Lindenfeld J, 2010, J CARD FAIL, V16, P1, DOI 10.1016/J.CARDFAIL.2010.04.004
  8. Hoedemaekers YM, 2010, CIRC-CARDIOVASC GENE, V3, P232, DOI 10.1161/CIRCGENETICS.109.903898
  9. Jenni R, 2002, J AM COLL CARDIOL, V39, P450, DOI 10.1016/S0735-1097(01)01765-X
  10. Kates AM, 2003, J AM COLL CARDIOL, V41, P293, DOI 10.1016/S0735-1097(02)02714-6
  11. Li J, 2015, CLIN RES CARDIOL, V104, P241, DOI 10.1007/s00392-014-0778-z
  12. Lindroos MM, 2016, J INHERIT METAB DIS, V39, P67, DOI 10.1007/s10545-015-9865-1
  13. Liu SH, 2013, MOL GENET METAB, V109, P100, DOI 10.1016/j.ymgme.2013.02.004
  14. Lopaschuk GD, 2007, CIRC RES, V101, P335, DOI 10.1161/CIRCRESAHA.107.150417
  15. Neubauer S, 2007, NEW ENGL J MED, V356, P1140, DOI 10.1056/NEJMra063052
  16. Nickel A, 2013, BASIC RES CARDIOL, V108, DOI 10.1007/s00395-013-0358-9
  17. Niemann M, 2012, EUR J HEART FAIL, V14, P155, DOI 10.1093/eurjhf/hfr164
  18. Ortiz-Perez JT, 2008, JACC-CARDIOVASC IMAG, V1, P282, DOI 10.1016/j.jcmg.2008.01.014
  19. Paterick TE, 2012, J AM SOC ECHOCARDIOG, V25, P363, DOI 10.1016/j.echo.2011.12.023
  20. Petersen SE, 2005, J AM COLL CARDIOL, V46, P101, DOI 10.1016/j.jacc.2005.03.045
  21. Ponikowski P, 2016, EUR J HEART FAIL, V18, P891, DOI 10.1002/ejhf.592
  22. RANDLE PJ, 1963, LANCET, V1, P785
  23. Sabbah HN, 2004, HEART FAIL REV, V9, P91, DOI 10.1023/B:HREV.0000046363.59374.23
  24. Scaglia F, 2004, PEDIATRICS, V114, P925, DOI 10.1542/peds.2004-0718
  25. Soares J, 2014, INT J CARDIOVAS IMAG, V30, P415, DOI 10.1007/s10554-013-0324-5
  26. Taegtmeyer H, 2016, CIRC RES, V118, P1659, DOI 10.1161/RES.0000000000000097
  27. Tang S, 2010, MITOCHONDRION, V10, P350, DOI 10.1016/j.mito.2010.02.003
  28. Towbin JA, 2015, LANCET, V386, P813, DOI 10.1016/S0140-6736(14)61282-4
  29. van den Heuvel AFM, 2000, J AM COLL CARDIOL, V35, P19, DOI 10.1016/S0735-1097(99)00499-4
  30. Wai T, 2015, SCIENCE, V350, DOI 10.1126/science.aad0116
  31. Yamada AT, 2007, ARQ BRAS CARDIOL, V88, P285, DOI 10.1590/S0066-782X2007000300006
  32. Yamano M, 2009, HEART, V95, P1051, DOI 10.1136/hrt.2008.158980