Effect of echium oil combined with phytosterols on biomarkers of atherosclerosis in LDLr-knockout mice: Echium oil is a potential alternative to marine oils for use in functional foods

Carregando...
Imagem de Miniatura
Citações na Scopus
15
Tipo de produção
article
Data de publicação
2015
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY-BLACKWELL
Autores
BOTELHO, Patricia Borges
GUIMARAES, Jessica Pereira
MARIANO, Karina Rocha
CASTRO, Inar Alves
Citação
EUROPEAN JOURNAL OF LIPID SCIENCE AND TECHNOLOGY, v.117, n.10, p.1561-1568, 2015
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Bioactive compounds may be an alternative approach to prevent atherosclerosis. To evaluate this hypothesis, LDLr-knockout mice were supplemented with omega-3 fatty acids from Echium oil (10.24mg/d of oil with 1,14mg/d of SDA and 9.06mg/d of ALA) equivalent to 0.7mg/d of EPA after conversion, combined or not with phytosterols (0.76mg/d), during the first 2 months of life. Subsequently, dyslipidaemia was induced by a high-fat diet for the following 2 months. Echium oil, isolated or combined with phytosterols, improved lipid profile in plasma reducing triacylglycerol (90.37.6mg/dL) and VLDL-c (18.01.5mg/dL) concentrations when compared with Control (115.8 +/- 9.4mg/dL and 23.2 +/- 1.9mg/dL, respectively). Echium oil also increased catalase (5.66 +/- 0.13U/mg protein) while Echium oil combined with phytosterol increased glutathione peroxidase activity (26.27 +/- 0.10U/mg protein) when compared with Control (5.18 +/- 0.10U/mg protein and 25.31 +/- 0.16U/mg protein, respectively). In addition, groups receiving Echium oil have reduced malondialdehyde concentration in liver (p=0.05). However, no difference was observed in fatty streak lesions when compared with Control. Isolated phytosterols did not change cholesterol absorption and increased lesion area compared with control group. This result can be associated with the high dose applied in the first step of supplementation and with the form of supplementation (gavage). Practical applications: One factor that contributes to the number of deaths from cardiovascular disease is that pharmacological interventions usually start too late in life. For this reason, functional foods development is a very important strategy to prevent atherosclerosis, since their inclusion in diet can start much earlier. However, it represents a challenge because many physiological responses from chronic consumption of bioactive compounds are still unknown. In this study, considering the positive results on triglyceridemia and oxidative stress biomarkers, we suggest that Echium oil can be an alternative for development of functional foods. We selected Echium oil due to its higher proportion of stearidonic fatty acids (pro-EPA) and lower sensory limitation than marine oils. Echium oil improves lipid profile and reduces oxidative stress, while phytosterol increases fatty streak.
Palavras-chave
Atherosclerosis, Echium, Mice, Omega 3, Oxidative stress, Phytosterols
Referências
  1. Albumweis S. S., 2008, FOOD NUTR RES, P52
  2. Racette SB, 2010, AM J CLIN NUTR, V91, P32, DOI 10.3945/ajcn.2009.28070
  3. Venegas-Caleron M, 2010, PROG LIPID RES, V49, P108, DOI 10.1016/j.plipres.2009.10.001
  4. PAIGEN B, 1987, ATHEROSCLEROSIS, V68, P231, DOI 10.1016/0021-9150(87)90202-4
  5. FLOHE L, 1984, METHOD ENZYMOL, V105, P114
  6. Moghadasian MH, 1999, AM J MED, V107, P588, DOI 10.1016/S0002-9343(99)00285-5
  7. Lozano R, 2012, LANCET, V380, P2095, DOI 10.1016/S0140-6736(12)61728-0
  8. Assmann G, 2006, NUTR METAB CARDIOVAS, V16, P13, DOI 10.1016/j.numecd.2005.04.001
  9. De Smet E, 2012, MOL NUTR FOOD RES, V56, P1058, DOI 10.1002/mnfr.201100722
  10. Whelan J, 2009, J NUTR, V139, P5, DOI 10.3945/jn.108.094268
  11. Libby P, 2011, NATURE, V473, P317, DOI 10.1038/nature10146
  12. Hong YL, 2000, CLIN BIOCHEM, V33, P619, DOI 10.1016/S0009-9120(00)00177-6
  13. Krauss RM, 2004, DIABETES CARE, V27, P1496, DOI 10.2337/diacare.27.6.1496
  14. Sudhop T, 2002, METABOLISM, V51, P1519, DOI 10.1053/meta.2002.36298
  15. Poudyal H, 2011, PROG LIPID RES, V50, P372, DOI 10.1016/j.plipres.2011.06.003
  16. Din JN, 2013, HEART, V99, P168, DOI 10.1136/heartjnl-2012-302924
  17. Clifton PM, 2004, J LIPID RES, V45, P1493, DOI 10.1194/jlr.M400074
  18. Calpe-Berdiel L, 2009, ATHEROSCLEROSIS, V203, P18, DOI 10.1016/j.atherosclerosis.2008.06.026
  19. Ewing JF, 1995, ANAL BIOCHEM, V232, P243, DOI 10.1006/abio.1995.0014
  20. Oliver E, 2012, J NUTR BIOCHEM, V23, P1192, DOI 10.1016/j.jnutbio.2011.06.014
  21. Izar MC, 2011, GENES NUTR, V6, P17, DOI 10.1007/s12263-010-0182-x
  22. Hall SS, 2013, NATURE, V496, P152, DOI 10.1038/496152a
  23. CARLBERG I, 1975, J BIOL CHEM, V250, P5475
  24. Brown AL, 2012, ARTERIOSCL THROM VAS, V32, P2122, DOI 10.1161/ATVBAHA.112.253435
  25. Shirai N, 2005, ANAL BIOCHEM, V343, P48, DOI 10.1016/j.ab.2005.04.037
  26. Bombo RPA, 2013, ATHEROSCLEROSIS, V231, P442, DOI 10.1016/j.atherosclerosis.2013.10.015
  27. AOCS, 2004, AOCS METH
  28. BONAVENT.J, 1972, ARCH BIOCHEM BIOPHYS, V150, P606, DOI 10.1016/0003-9861(72)90080-X
  29. Calder P. C., 2012, J NUTR, V142, P592, DOI 10.3945/JN.111.155259
  30. FDA. US Food and Drug Administration, 2009, HLTH CLAIMS M SIGN S
  31. Frankel E. N., 2005, LIPID OXIDATION
  32. FRIEDEWA.WT, 1972, CLIN CHEM, V18, P499
  33. Harris WS, 2012, J NUTR, V142, p600S, DOI 10.3945/jn.111.146613
  34. Mendis S, 2005, GLOBAL HEART, V1, P3
  35. Reeves P.G., 1993, J NUTR, V123, P939