Thioredoxin interacting protein expression in the urinary sediment associates with renal function decline in type 1 diabetes

Carregando...
Imagem de Miniatura
Citações na Scopus
23
Tipo de produção
article
Data de publicação
2016
Título da Revista
ISSN da Revista
Título do Volume
Editora
TAYLOR & FRANCIS LTD
Citação
FREE RADICAL RESEARCH, v.50, n.1, p.101-110, 2016
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Aims: Thioredoxin interacting protein (TXNIP), an inhibitor of antioxidant thioredoxin (Trx), is upregulated by hyperglycemia and implicated in pathogenesis of diabetes complications. We evaluated mRNA expressions of genes encoding TXNIP and Trx (TXN) in urinary sediment and peripheral blood mononuclear cells (PBMC) of type 1 diabetes (T1D) patients with different degrees of chronic complications. Methods: qPCR was employed to quantify target genes in urinary sediment (n=55) and PBMC (n=161) from patients sorted by presence or absence of diabetic nephropathy (DN), retinopathy, peripheral and cardiovascular neuropathy; 26 healthy controls and 13 patients presenting non-diabetic nephropathy (focal and segmental glomerulosclerosis, FSGS) were also included. Results: Regarding the urinary sediment, TXNIP (but not TXN) expression was higher in T1D (p=0.0023) and FSGS (p=0.0027) patients versus controls. Expressions of TXNIP and TXN were higher, respectively, in T1D patients with versus without DN (p=0.032) and in those with estimated glomerular filtration rate (eGFR) <60 versus >= 60 mL/min/1.73 m(2) (p=0.008). eGFR negatively correlated with TXNIP (p=0.04, r=-0.28) and TXN (p=0.04, r=-0.30) expressions. T1D patients who lost >= 5 mL/min/1.73 m(2) yearly of eGFR presented higher basal TXNIP expression than those who lost<5 mL/min/1.73 m(2) yearly after median follow-up of 24 months. TXNIP (p<0.0001) and TXN (p=0.002) expressions in PBMC of T1D patients were significantly higher than in controls but no differences were observed between patients with or without chronic complications. Conclusions: TXNIP and TXN are upregulated in urinary sediment of T1D patients with diabetic kidney disease (DKD), but only TXNIP expression is associated with magnitude of eGFR decline.
Palavras-chave
Diabetic complications, diabetic kidney disease, oxidative stress, PBMC, urinary sediment
Referências
  1. Andrews Guzman M, 2014, NUTR HOSP, V31, P1129
  2. Shah A, 2013, J BIOL CHEM, V288, P6835, DOI 10.1074/jbc.M112.419101
  3. Okuda LS, 2012, BBA-MOL CELL BIOL L, V1821, P1485, DOI 10.1016/j.bbalip.2012.08.011
  4. Kobayashi T, 2003, KIDNEY INT, V64, P1632, DOI 10.1046/j.1523-1755.2003.00263.x
  5. Abais JM, 2014, J BIOL CHEM, V289, P27159, DOI 10.1074/jbc.M114.567537
  6. Wei JY, 2013, CELL SIGNAL, V25, P2788, DOI 10.1016/j.cellsig.2013.09.009
  7. Perrone L, 2009, J CELL PHYSIOL, V221, P262, DOI 10.1002/jcp.21852
  8. Vinik AI, 2007, CIRCULATION, V115, P387, DOI 10.1161/CIRCULATIONAHA.106.634949
  9. Wilkinson CP, 2003, OPHTHALMOLOGY, V110, P1677, DOI 10.1016/S0161-6420(03)00475-5
  10. Levey AS, 2009, ANN INTERN MED, V150, P604
  11. Sbai O, 2010, J CELL SCI, V123, P4332, DOI 10.1242/jcs.074674
  12. Huang CL, 2014, LAB INVEST, V94, P309, DOI 10.1038/labinvest.2014.2
  13. Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
  14. Meijer JWG, 2003, DIABETES CARE, V26, P697, DOI 10.2337/diacare.26.3.697
  15. Hirota K, 1999, J BIOL CHEM, V274, P27891, DOI 10.1074/jbc.274.39.27891
  16. Advani A, 2009, J AM SOC NEPHROL, V20, P730, DOI 10.1681/ASN.2008020142
  17. Qi W, 2007, AM J PATHOL, V171, P744, DOI 10.2353/ajpath.2007.060813
  18. Lu J, 2014, FREE RADICAL BIO MED, V66, P75, DOI 10.1016/j.freeradbiomed.2013.07.036
  19. Wang W, 2015, FREE RADICAL BIO MED, V83, P214, DOI 10.1016/j.freeradbiomed.2015.02.029
  20. Vlassara H, 2011, NAT REV ENDOCRINOL, V7, P526, DOI 10.1038/nrendo.2011.74
  21. Tobino K, 2015, NEPHROLOGY, V20, P368, DOI 10.1111/nep.12403
  22. Szeto CC, 2005, NEPHROL DIAL TRANSPL, V20, P105, DOI 10.1093/ndt/gfh574
  23. Fujino G, 2006, SEMIN CANCER BIOL, V16, P427, DOI 10.1016/j.semcancer.2006.09.003
  24. Shi YH, 2011, FEBS LETT, V585, P1789, DOI 10.1016/j.febslet.2011.04.021
  25. Joshi S, 2015, J UROLOGY, V193, P1684, DOI 10.1016/j.juro.2014.11.093
  26. Chong CR, 2014, CARDIOVASC DRUG THER, V28, P347, DOI 10.1007/s10557-014-6538-5
  27. Price SA, 2006, BRAIN RES, V1116, P206, DOI 10.1016/j.brainres.2006.07.109
  28. Abderrazak A, 2015, REDOX BIOL, V4, P296, DOI 10.1016/j.redox.2015.01.008
  29. Boulton AJM, 2005, CLIN DIABETES, V23, P9, DOI 10.2337/diaclin.23.1.9
  30. Böyum A, 1968, Scand J Clin Lab Invest Suppl, V97, P77
  31. Dumaual CM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0072977
  32. Fleige Simone, 2006, Molecular Aspects of Medicine, V27, P126, DOI 10.1016/j.mam.2005.12.003
  33. Gao P, 2014, BBA-MOL CELL RES, V1843, P2448, DOI 10.1016/j.bbamcr.2014.07.001
  34. Hamada Yasuhiro, 2007, Kobe J Med Sci, V53, P53
  35. Monteiro M, 2015, ISN WORLD C NEPHR 20, P165
  36. Perrone L, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.42
  37. Rchian AL, 2014, CLIN LAB, V60, P253
  38. Yang SM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074871