Carbohydrate supplementation delays DNA damage in elite runners during intensive microcycle training

Carregando...
Imagem de Miniatura
Citações na Scopus
15
Tipo de produção
article
Data de publicação
2012
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER
Citação
EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY, v.112, n.2, p.493-500, 2012
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The aim of this study was to evaluate the effect of carbohydrate supplementation on free plasma DNA and conventional markers of training and tissue damage in long-distance runners undergoing an overload training program. Twenty-four male runners were randomly assigned to two groups (CHO group and control group). The participants were submitted to an overload training program (days 1-8), followed by a high-intensity intermittent running protocol (10 x 800 m) on day 9. The runners received maltodextrin solution (CHO group) or zero energy placebo solution as the control equivalent before, during, and after this protocol. After 8 days of intensive training, baseline LDH levels remained constant in the CHO group (before: 449.1 +/- 18.2, after: 474.3 +/- 22.8 U/L) and increased in the control group (from 413.5 +/- 23.0 to 501.8 +/- 24.1 U/L, p < 0.05). On day 9, LDH concentrations were lower in the CHO group (509.2 +/- 23.1 U/L) than in the control group (643.3 +/- 32.9 U/L, p < 0.01) post-intermittent running. Carbohydrate ingestion attenuated the increase of free plasma DNA post-intermittent running (48,240.3 +/- 5,431.8 alleles/mL) when compared to the control group (73,751.8 +/- 11,546.6 alleles/mL, p < 0.01). Leukocyte counts were lower in the CHO group than in the control group post-intermittent running (9.1 +/- 0.1 vs. 12.2 +/- 0.7 cells/mu L; p < 0.01) and at 80 min of recovery (10.6 +/- 0.1 vs. 13.9 +/- 1.1 cells/mu L; p < 0.01). Cortisol levels were positively correlated with free plasma DNA, leukocytes, and LDH (all r > 0.4 and p < 0.001). The results showed that ingestion of a carbohydrate beverage resulted in less DNA damage and attenuated the acute post-exercise inflammation response, providing better recovery during intense training.
Palavras-chave
Free plasma DNA, Tissue damage, Inflammation, Overtraining, Intensive training
Referências
  1. Angeli A, 2004, J ENDOCRINOL INVEST, V27, P603
  2. BALON TW, 1994, J APPL PHYSIOL, V77, P2519
  3. Bassini-Cameron A, 2007, BRIT J SPORT MED, V41, P523, DOI 10.1136/bjsm.2007.035147
  4. Bessa A, 2008, BRIT J SPORT MED, V42, P889, DOI 10.1136/bjsm.2007.043786
  5. Brancaccio P, 2007, BRIT MED BULL, V81-82, P209, DOI 10.1093/bmb/ldm014
  6. Chen TC, 2001, MED SCI SPORT EXER, V33, P1732, DOI 10.1097/00005768-200110000-00018
  7. Close GL, 2005, BRIT J SPORT MED, V39, P948, DOI 10.1136/bjsm.2005.019844
  8. de Sousa MV, 2010, EUR J APPL PHYSIOL, V109, P507, DOI 10.1007/s00421-010-1388-8
  9. Dhabhar FS, 1999, P NATL ACAD SCI USA, V96, P1059, DOI 10.1073/pnas.96.3.1059
  10. Fatouros IG, 2006, CLIN CHEM, V52, P1820, DOI 10.1373/clinchem.2006.070417
  11. Febbraio MA, 2002, FASEB J, V16, P1335, DOI 10.1096/fj.01-0876rev
  12. Flint MS, 2007, PSYCHONEUROENDOCRINO, V32, P470, DOI 10.1016/j.psyneuen.2007.02.013
  13. Gleeson M, 2007, J APPL PHYSIOL, V103, P693, DOI 10.1152/japplphysiol.00008.2007
  14. Halson SL, 2004, SPORTS MED, V34, P967, DOI 10.2165/00007256-200434140-00003
  15. Inoue M, 2008, AM J EPIDEMIOL, V168, P391, DOI 10.1093/aje/kwn146
  16. Judelson DA, 2008, J APPL PHYSIOL, V105, P816, DOI 10.1152/japplphysiol.01010.2007
  17. Kentta G, 1998, SPORTS MED, V26, P1
  18. Kraemer WJ, 1998, J APPL PHYSIOL, V85, P1544
  19. Li YX, 2009, BIOCHEM BIOPH RES CO, V384, P259, DOI 10.1016/j.bbrc.2009.04.113
  20. Maughan RJ, 1997, BRIT J SPORT MED, V31, P45
  21. McAnulty S, 2007, INT J SPORTS MED, V28, P921, DOI 10.1055/s-2007-964987
  22. McKenzie DC, 1999, CAN J APPL PHYSIOL, V24, P66
  23. Meeusen R, 2006, EUR J SPORT SCI, V6, P1, DOI 10.1080/17461390600617717
  24. Mitchell JB, 1998, J APPL PHYSIOL, V84, P1917
  25. Moreira A, 2009, BRIT MED BULL, V90, P111, DOI 10.1093/bmb/ldp010
  26. Mougios V, 2007, BRIT J SPORT MED, V41, P674, DOI 10.1136/bjsm.2006.034041
  27. Nikolaidis MG, 2008, SPORTS MED, V38, P579, DOI 10.2165/00007256-200838070-00005
  28. Overgaard K, 2004, MED SCI SPORT EXER, V36, P821, DOI 10.1249/01.MSS.0000126468.65714.60
  29. Pedersen BK, 2000, PHYSIOL REV, V80, P1055
  30. Romano-Ely BC, 2006, MED SCI SPORT EXER, V38, P1608, DOI 10.1249/01.mss.0000229458.11452.e9
  31. Rose AJ, 2005, PHYSIOLOGY, V20, P260, DOI 10.1152/physiol.00012.2005
  32. Saunders MJ, 2004, MED SCI SPORT EXER, V36, P1233, DOI 10.1249/01.MSS.0000132377.66177.9F
  33. Scharhag Jurgen, 2006, Med Sci Sports Exerc, V38, P286, DOI 10.1249/01.mss.0000191437.69493.d4
  34. Stroun M, 2001, CLIN CHIM ACTA, V313, P139, DOI 10.1016/S0009-8981(01)00665-9
  35. Su QS, 2008, EUR J APPL PHYSIOL, V103, P275, DOI 10.1007/s00421-008-0699-5
  36. Sugiura K, 1999, INT J SPORT NUTR, V9, P202
  37. Sun X, 2008, BIOCHEM BIOPH RES CO, V377, P1097, DOI 10.1016/j.bbrc.2008.10.109
  38. Suzuki K, 1999, J APPL PHYSIOL, V87, P1360
  39. Swaminathan R, 2006, ANN NY ACAD SCI, V1075, P1, DOI 10.1196/annals.1368.001
  40. Teshima Y, 2010, LIFE SCI, V87, P154, DOI 10.1016/j.lfs.2010.06.006
  41. Totsuka M, 2002, J APPL PHYSIOL, V93, P1280, DOI 10.1152/japplphysiol.01270.2001
  42. Tsai K, 2001, FREE RADICAL BIO MED, V31, P1465, DOI 10.1016/S0891-5849(01)00729-8
  43. van der Vaart M, 2008, ANN NY ACAD SCI, V1137, P18, DOI 10.1196/annals.1448.022
  44. Ziegler PJ, 1999, INT J SPORT NUTR, V9, P345