An integrative approach to investigate the respective roles of single-nucleotide variants and copy-number variants in Attention-Deficit/Hyperactivity Disorder

Carregando...
Imagem de Miniatura
Citações na Scopus
16
Tipo de produção
article
Data de publicação
2016
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PUBLISHING GROUP
Autores
LIMA, Leandro de Araujo
BELANGERO, Sintia Iole
GADELHA, Ary
BRESSAN, Rodrigo Affonseca
SALUM, Giovanni Abrahao
PAN, Pedro Mario
TAMANAHA, Ana Carina
Citação
SCIENTIFIC REPORTS, v.6, article ID 22851, 12p, 2016
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Many studies have attempted to investigate the genetic susceptibility of Attention-Deficit/Hyperactivity Disorder (ADHD), but without much success. The present study aimed to analyze both single-nucleotide and copy-number variants contributing to the genetic architecture of ADHD. We generated exome data from 30 Brazilian trios with sporadic ADHD. We also analyzed a Brazilian sample of 503 children/adolescent controls from a High Risk Cohort Study for the Development of Childhood Psychiatric Disorders, and also previously published results of five CNV studies and one GWAS meta-analysis of ADHD involving children/adolescents. The results from the Brazilian trios showed that cases with de novo SNVs tend not to have de novo CNVs and vice-versa. Although the sample size is small, we could also see that various comorbidities are more frequent in cases with only inherited variants. Moreover, using only genes expressed in brain, we constructed two ""in silico"" protein-protein interaction networks, one with genes from any analysis, and other with genes with hits in two analyses. Topological and functional analyses of genes in this network uncovered genes related to synapse, cell adhesion, glutamatergic and serotoninergic pathways, both confirming findings of previous studies and capturing new genes and genetic variants in these pathways.
Palavras-chave
Referências
  1. Akula N, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024220
  2. Akutagava-Martins GC, 2014, AM J MED GENET B, V165, P502, DOI 10.1002/ajmg.b.32253
  3. Lupski JR, 2011, CELL, V147, P32, DOI 10.1016/j.cell.2011.09.008
  4. Lesch KP, 2011, MOL PSYCHIATR, V16, P491, DOI 10.1038/mp.2010.29
  5. Lesch KP, 2008, J NEURAL TRANSM, V115, P1573, DOI 10.1007/s00702-008-0119-3
  6. Neale BM, 2008, AM J MED GENET B, V147B, P1337, DOI 10.1002/ajmg.b.30866
  7. Wang K, 2007, GENOME RES, V17, P1665, DOI 10.1101/gr.6861907
  8. Sun YV, 2012, HUM GENET, V131, P1677, DOI 10.1007/s00439-012-1198-7
  9. Neale BM, 2010, J AM ACAD CHILD PSY, V49, P884, DOI 10.1016/j.jaac.2010.06.008
  10. Banaschewski T, 2010, EUR CHILD ADOLES PSY, V19, P237, DOI 10.1007/s00787-010-0090-z
  11. State MW, 2011, NAT NEUROSCI, V14, P1499, DOI 10.1038/nn.2924
  12. Neale BM, 2012, NATURE, V485, P242, DOI 10.1038/nature11011
  13. Elia J, 2012, NAT GENET, V44, P78, DOI 10.1038/ng.1013
  14. Devlin B, 2012, CURR OPIN GENET DEV, V22, P229, DOI 10.1016/j.gde.2012.03.002
  15. Focking M, 2015, MOL PSYCHIATR, V20, P424, DOI 10.1038/mp.2014.63
  16. Frazer KA, 2009, NAT REV GENET, V10, P241, DOI 10.1038/nrg2554
  17. Yang L, 2013, AM J MED GENET B, V162B, P419, DOI 10.1002/ajmg.b.32169
  18. Hawi Z, 2015, MOL PSYCHIATR, V20, P289, DOI 10.1038/mp.2014.183
  19. Ohgi Y, 2015, CURR MOL MED, V15, P206
  20. Poultney CS, 2013, AM J HUM GENET, V93, P607, DOI 10.1016/j.ajhg.2013.09.001
  21. Roberts JL, 2014, GENE, V535, P70, DOI 10.1016/j.gene.2013.10.020
  22. Lantieri F, 2010, AM J MED GENET B, V153B, P1127, DOI 10.1002/ajmg.b.31110
  23. Yu TW, 2013, NEURON, V77, P259, DOI 10.1016/j.neuron.2012.11.002
  24. Hu YJ, 2015, P NATL ACAD SCI USA, V112, P1019, DOI 10.1073/pnas.1406143112
  25. Girirajan S, 2010, HUM MOL GENET, V19, pR176, DOI 10.1093/hmg/ddq366
  26. Cai JJ, 2010, GENOME BIOL EVOL, V2, P815, DOI 10.1093/gbe/evq064
  27. Jarick I, 2014, MOL PSYCHIATR, V19, P115, DOI 10.1038/mp.2012.161
  28. Han K, 2015, HUM MOL GENET, V24, P1813, DOI 10.1093/hmg/ddu595
  29. Poelmans G, 2011, AM J PSYCHIAT, V168, P365, DOI 10.1176/appi.ajp.2010.10070948
  30. Barabasi AL, 2011, NAT REV GENET, V12, P56, DOI 10.1038/nrg2918
  31. Lee TL, 2012, GENE, V496, P88, DOI 10.1016/j.gene.2012.01.020
  32. Mitchell KJ, 2011, PSYCHOL MED, V41, P19, DOI 10.1017/S003329171000070X
  33. Krumm N, 2013, AM J HUM GENET, V93, P595, DOI 10.1016/j.ajhg.2013.07.024
  34. Salum GA, 2015, INT J METH PSYCH RES, V24, P58, DOI 10.1002/mpr.1459
  35. Lee SH, 2013, NAT GENET, V45, P984, DOI 10.1038/ng.2711
  36. Hamshere ML, 2013, AM J PSYCHIAT, V170, P909, DOI 10.1176/appi.ajp.2013.12081129
  37. Sebat J, 2007, SCIENCE, V316, P445, DOI 10.1126/science.1138659
  38. Wang K, 2009, NATURE, V459, P528, DOI 10.1038/nature07999
  39. Williams NM, 2010, LANCET, V376, P1401, DOI 10.1016/S0140-6736(10)61109-9
  40. Faraone SV, 2005, BIOL PSYCHIAT, V57, P1313, DOI 10.1016/j.biopsych.2004.11.024
  41. Cross-Disorder Group of the Psychiatric Genomics Consortium, 2013, LANCET, V381, P1371, DOI 10.1016/S0140-6736(12)62129-1
  42. dela Pena I, 2014, BEHAV BRAIN FUNCT, V10, DOI 10.1186/1744-9081-10-17
  43. Escudero I, 2014, CURR PSYCHIAT REP, V16, DOI 10.1007/s11920-014-0502-8
  44. Fromer Menachem, 2014, Curr Protoc Hum Genet, V81, DOI 10.1002/0471142905.hg0723s81
  45. Ghani M, 2013, JAMA NEUROL, V70, P1261, DOI 10.1001/jamaneurol.2013.3545
  46. Girirajan S, 2011, PLOS GENET, V7, DOI 10.1371/journal.pgen.1002334
  47. Guipponi M, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0112745
  48. He X, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1003671
  49. Jia PL, 2012, BMC GENOMICS, V13, DOI 10.1186/1471-2164-13-S6-S15
  50. Kavanagh DH, 2015, MOL PSYCHIATR, V20, P72, DOI 10.1038/mp.2014.148
  51. Kerner Berit, 2014, Appl Clin Genet, V7, P33, DOI 10.2147/TACG.S39297
  52. Li WJ, 2015, AM J MED GENET B, V168, P144, DOI 10.1002/ajmg.b.32291
  53. Lionel AC, 2011, SCI TRANSL MED, V3, P95, DOI 10.1126/SCITRANSLMED.3002464
  54. Litterman N, 2011, PLOS BIOL, V9, DOI 10.1371/journal.pbio.1001060
  55. Martin J, 2015, TRANSL PSYCHIAT, V5, DOI 10.1038/tp.2015.5
  56. Neufang S, 2015, NEUROIMAGE, V114, P199, DOI 10.1016/j.neuroimage.2015.03.064
  57. Rodriguez-Murillo L, 2012, ANNU REV MED, V63, P63, DOI 10.1146/annurev-med-072010-091100
  58. Rossin EJ, 2011, PLOS GENET, V7, DOI 10.1371/journal.pgen.1001273
  59. Ruiz-Linares A, 2014, PLOS GENET, V10, DOI 10.1371/journal.pgen.1004572
  60. Sato JR, 2016, J CHILD PSYCHOL PSYC, V57, P55, DOI 10.1111/jcpp.12444
  61. Schizophrenia Working Group of the Psychiatric Genomics C, 2014, NATURE, V511, P421, DOI 10.1038/NATURE13595
  62. Stanford SC, 2014, NEUROPHARMACOLOGY, V87, P9, DOI 10.1016/j.neuropharm.2014.03.021
  63. Zhao J, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024306