High 18F-FDG uptake in PMAH correlated with normal expression of Glut1, HK1, HK2, and HK3

Carregando...
Imagem de Miniatura
Citações na Scopus
9
Tipo de produção
article
Data de publicação
2016
Título da Revista
ISSN da Revista
Título do Volume
Editora
SAGE PUBLICATIONS LTD
Citação
ACTA RADIOLOGICA, v.57, n.3, p.370-377, 2016
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background Primary macronodular adrenal hyperplasia (PMAH) is a rare cause of Cushing's syndrome, characterized by functioning adrenal macronodules and variable cortisol production. Recently, we demonstrated a high 18F-FDG uptake in PMAH, an unexpected finding for a benign disorder. Purpose To investigate whether there is a correlation between 18F-FDG high uptake and the expression levels of the glycolytic pathway components GLUT1, HK1, HK2, and HK3 in PMAH. Material and Methods We selected 12 patients undergoing surgery for PMAH who had preoperatively undergone 18F-FDG PET/CT. mRNA and protein expression of the selected genes were evaluated in the adrenal nodules from patients who underwent surgery through quantitative RT-PCR and by immunohistochemistry, respectively. Results SUVmax in PMAH was in the range of 3.3-8.9 and the adrenal size was in the range of 3.5-15cm. A strong correlation between 18F-FDG uptake and largest adrenal diameter was observed in patients with PMAH. However, no correlation between 18F-FDG uptake and GLUT1, HK1, HK2, HK3 mRNA, and protein expression was observed. Conclusion High 18F-FDG uptake is observed in the majority of PMAH cases. However, 18F-FDG uptake in PMAH is independent of the expression levels of GLUT1, HK1, HK2, and HK3. Further investigation is required to elucidate the molecular mechanisms underlying increased 18F-FDG uptake in PMAH.
Palavras-chave
Primary macronodular adrenal hyperplasia, 18F-FDG, PET, adrenal, adults, hyperplasia, monoclonal antibodies, Cushing's syndrome
Referências
  1. MCCARTY KS, 1985, ARCH PATHOL LAB MED, V109, P716
  2. Ong LC, 2008, ACTA RADIOL, V49, P1145, DOI 10.1080/02841850802482486
  3. Yen TC, 2004, J NUCL MED, V45, P22
  4. Newell-Price J, 2008, CLIN MED, V8, P204
  5. Fenske W, 2009, ENDOCR-RELAT CANCER, V16, P919, DOI 10.1677/ERC-08-0211
  6. HABERKORN U, 1994, NUCL MED BIOL, V21, P827, DOI 10.1016/0969-8051(94)90162-7
  7. Lin EC, 2002, CLIN NUCL MED, V27, P516, DOI 10.1097/01.RLU.0000016283.39485.9D
  8. Mamede M, 2005, NEOPLASIA, V7, P369, DOI 10.1593/neo.04577
  9. Metser U, 2006, J NUCL MED, V47, P32
  10. Boland GWL, 2009, AM J ROENTGENOL, V192, P956, DOI 10.2214/AJR.08.1431
  11. Yamada K, 2005, J DERMATOL, V32, P316
  12. van Berkel A, 2014, J NUCL MED, V55, P1253, DOI 10.2967/jnumed.114.137034
  13. Dudczak R, 2010, EUR J RADIOL, V73, P481, DOI 10.1016/j.ejrad.2009.12.024
  14. Bourdeau I, 2002, ANN NY ACAD SCI, V968, P240
  15. Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
  16. Alencar GA, 2011, J CLIN ENDOCR METAB, V96, P3300, DOI 10.1210/jc.2011-1397
  17. Izuishi K, 2012, J GASTROINTEST SURG, V16, P394, DOI 10.1007/s11605-011-1727-z
  18. Shimizu A, 2003, ANN NUCL MED, V17, P403, DOI 10.1007/BF03006609
  19. Lacroix A, 2009, BEST PRACT RES CL EN, V23, P245, DOI 10.1016/j.beem.2008.10.011
  20. Brown RS, 1999, J NUCL MED, V40, P556
  21. Antonini Sonir R, 2004, Arq Bras Endocrinol Metabol, V48, P620, DOI 10.1590/S0004-27302004000500006
  22. Binderup T, 2010, CLIN CANCER RES, V16, P978, DOI 10.1158/1078-0432.CCR-09-1759
  23. Cushing H, 1994, Obes Res, V2, P486
  24. Kirchner MA, 1964, J CLIN ENDOCR METAB, V24, P947