Calorie restriction increases cerebral mitochondrial respiratory capacity in a NO center dot-mediated mechanism: Impact on neuronal survival

Carregando...
Imagem de Miniatura
Citações na Scopus
50
Tipo de produção
article
Data de publicação
2012
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCIENCE INC
Autores
CERQUEIRA, Fernanda M.
CUNHA, Fernanda M.
KOWALTOWSKI, Alicia J.
Citação
FREE RADICAL BIOLOGY AND MEDICINE, v.52, n.7, p.1236-1241, 2012
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Calorie restriction (CR) enhances animal life span and prevents age-related diseases, including neurological decline. Recent evidence suggests that a mechanism involved in CR-induced life-span extension is NO-stimulated mitochondrial biogenesis. We examine here the effects of CR on brain mitochondrial content. CR increased eNOS and nNOS and the content of mitochondria] proteins (cytochrome c oxidase, citrate synthase, and mitofusin) in the brain. Furthermore, we established an in vitro system to study the neurological effects of CR using serum extracted from animals on this diet. In cultured neurons, CR serum enhanced nNOS expression and increased levels of nitrite (a NO product). CR serum also enhanced the levels of cytochrome c oxidase and increased citrate synthase activity and respiratory rates in neurons. CR serum effects were inhibited by L-NAME and mimicked by the NO donor SNAP. Furthermore, both CR sera and SNAP were capable of improving neuronal survival. Overall, our results indicate that CR increases mitochondrial biogenesis in a NO-mediated manner, resulting in enhanced reserve respiratory capacity and improved survival in neurons.
Palavras-chave
Caloric restriction, nitric oxide synthase, mitochondrial biogenesis, aging
Referências
  1. Allard JS, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003211
  2. BAMBRICK LL, 1995, P NATL ACAD SCI USA, V92, P9692, DOI 10.1073/pnas.92.21.9692
  3. Baylis C, 1998, CURR OPIN NEPHROL HY, V7, P59
  4. Cerqueira FM, 2011, FREE RADICAL BIO MED, V51, P1454, DOI 10.1016/j.freeradbiomed.2011.07.006
  5. Cerqueira FM, 2010, AGEING RES REV, V9, P424, DOI 10.1016/j.arr.2010.05.002
  6. Cerqueira FM, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018433
  7. Cho DH, 2009, SCIENCE, V324, P102, DOI 10.1126/science.1171091
  8. Colman RJ, 2009, SCIENCE, V325, P201, DOI 10.1126/science.1173635
  9. Contestabile A., CEREBELLUM IN PRESS, DOI [10.1007/s12311-010-0234-1, DOI 10.1007/S12311-010-0234-1]
  10. COURTNEY MJ, 1990, J NEUROSCI, V10, P3873
  11. da Silva CCC, 2008, AGING CELL, V7, P552, DOI 10.1111/j.1474-9726.2008.00407.x
  12. de Cabo R, 2003, EXP GERONTOL, V38, P631, DOI 10.1016/S0531-5565(03)00055-X
  13. Dranka BP, 2010, FREE RADICAL BIO MED, V48, P905, DOI 10.1016/j.freeradbiomed.2010.01.015
  14. Fatokun AA, 2008, BRAIN RES, V1230, P265, DOI [10.1016/j.brainres.2008.06.109, 10.1016/j.brainres.2008.06,109]
  15. Fritzen S, 2007, MOL CELL NEUROSCI, V35, P261, DOI 10.1016/j.mcn.2007.02.021
  16. Gu ZZ, 2002, SCIENCE, V297, P1186, DOI 10.1126/science.1073634
  17. Gutsaeva DR, 2008, J NEUROSCI, V28, P2015, DOI 10.1523/JNEUROSCI.5654-07.2008
  18. Hales KG, 1997, CELL, V90, P121, DOI 10.1016/S0092-8674(00)80319-0
  19. Jones TT, 2010, BBA-BIOENERGETICS, V1797, P167, DOI 10.1016/j.bbabio.2009.09.009
  20. Knott AB, 2009, ANTIOXID REDOX SIGN, V11, P541, DOI 10.1089/ARS.2008.2234
  21. Le Gouill E, 2007, DIABETES, V56, P2690, DOI 10.2337/db06-1228
  22. Lin SJ, 2002, NATURE, V418, P344, DOI 10.1038/nature00829
  23. Lopez-Lluch G, 2006, P NATL ACAD SCI USA, V103, P1768, DOI 10.1073/pnas.0510452103
  24. Martinez-Lazcano JC, 2007, J NEUROSCI RES, V85, P1391, DOI 10.1002/jnr.21261
  25. MATTSON MP, 1992, J NEUROSCI, V12, P376
  26. Mattson MP, 2010, FRONT AGING NEUROSCI, V2, P1
  27. McConell GK, 2008, CLIN EXP PHARMACOL P, V35, P1488, DOI 10.1111/j.1440-1681.2008.05038.x
  28. Nisoli E, 2003, SCIENCE, V299, P896, DOI 10.1126/science.1079368
  29. Nisoli E, 2005, SCIENCE, V310, P314, DOI 10.1126/science.1117728
  30. Owens MW, 1997, AM J PHYSIOL-LUNG C, V273, pL445
  31. Partridge L, 2002, NAT REV GENET, V3, P165, DOI 10.1038/nrg753
  32. Rooyackers OE, 1996, CLIN SCI, V91, P475
  33. Sansbury BE, 2011, CHEM-BIOL INTERACT, V191, P288, DOI 10.1016/j.cbi.2010.12.002
  34. Seo AY, 2010, J CELL SCI, V123, P2533, DOI 10.1242/jcs.070490
  35. Sohal RS, 1996, SCIENCE, V273, P59, DOI 10.1126/science.273.5271.59
  36. Steinert JR, 2010, NEUROSCIENTIST, V16, P435, DOI 10.1177/1073858410366481
  37. Van Remmen H, 2001, Novartis Found Symp, V235, P221
  38. Wadley GD, 2007, J PHYSIOL-LONDON, V585, P253, DOI 10.1113/jphysiol.2007.141309
  39. Wu ZD, 1999, CELL, V98, P115, DOI 10.1016/S0092-8674(00)80611-X
  40. Yadava N, 2007, J NEUROSCI, V27, P7310, DOI 10.1523/JNEUROSCI.0212-07.2007
  41. Yuan H, 2007, CELL DEATH DIFFER, V14, P462, DOI 10.1038/sj.cdd.4402046