Effectiveness of traffic-related elements in tree bark and pollen abortion rates for assessing air pollution exposure on respiratory mortality rates

Carregando...
Imagem de Miniatura
Citações na Scopus
21
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
PERGAMON-ELSEVIER SCIENCE LTD
Citação
ENVIRONMENT INTERNATIONAL, v.99, p.161-169, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The majority of epidemiological studies correlate the cardiorespiratory effects of air pollution exposure by considering the concentrations of pollutants measured from conventional monitoring networks. The conventional air quality monitoring methods are expensive, and their data are insufficient for providing good spatial resolution. We hypothesized that bioassays using plants could effectively determine pollutant gradients, thus helping to assess the risks associated with air pollution exposure. The study regions were determined from different prevalent respiratory death distributions in the Sao Paulo municipality. Samples of tree flower buds were collected from twelve sites in four regional districts. The genotoxic effects caused by air pollution were tested through a pollen abortion bioassay. Elements derived from vehicular traffic that accumulated in tree barks were determined using energy-dispersive X-ray fluorescence spectrometry (EDXRF). Mortality data were collected from the mortality information program of Sao Paulo City. Principal component analysis (PCA) was applied to the concentrations of elements accumulated in tree barks. Pearson correlation and exponential regression were performed considering the elements, pollen abortion rates and mortality data. PCA identified five factors, of which four represented elements related to vehicular traffic. The elements Al, S, Fe, Mn, Cu, and Zn showed a strong correlation with mortality rates (R-2>0.87) and pollen abortion rates (R-2>0.82). These results demonstrate that tree barks and pollen abortion rates allow for correlations between vehicular traffic emissions and associated outcomes such as genotoxic effects and mortality data.
Palavras-chave
Air pollution, Mortality, Pollen abortion assay, Tree barks, Bioaccumulation and traffic related elements
Referências
  1. Andrade MD, 2012, AIR QUAL ATMOS HLTH, V5, P79, DOI 10.1007/s11869-010-0104-5
  2. Bell ML, 2012, ENVIRON HEALTH PERSP, V120, P1699, DOI 10.1289/ehp.1205201
  3. Carneiro MFH, 2011, ENVIRON EXP BOT, V72, P272, DOI 10.1016/j.envexpbot.2011.04.001
  4. Catinon M, 2009, CHEMOSPHERE, V77, P1313, DOI 10.1016/j.chemosphere.2009.09.039
  5. CETESB (Companhia de Tecnologia de Saneamento Ambiental), 2007, SER REL SEC EST MEIO
  6. CETESB (Companhia de Tecnologia de Saneamento Ambiental), 2012, SER REL SEC EST MEIO
  7. CETESB (Companhia de Tecnologia de Saneamento Ambiental), 2005, SER REL SEC EST MEIO
  8. CETESB (Companhia de Tecnologia de Saneamento Ambiental), 2004, SER REL SEC EST MEIO
  9. CETESB (Companhia de Tecnologia de Saneamento Ambiental), 2014, SER REL SEC EST MEIO
  10. Chen LC, 2009, INHAL TOXICOL, V21, P1, DOI 10.1080/08958370802105405
  11. Dominici F, 2006, JAMA-J AM MED ASSOC, V295, P1127, DOI 10.1001/jama.295.10.1127
  12. EPA US., 1980, PUBL EPA, P1
  13. Fleck AD, 2016, ATMOS POLLUT RES, V7, P488, DOI 10.1016/j.apr.2015.12.002
  14. Gottipolu RR, 2008, INHAL TOXICOL, V20, P473, DOI 10.1080/08958370701858427
  15. Gueguen F, 2012, CHEMOSPHERE, V86, P1013, DOI 10.1016/j.chemosphere.2011.11.040
  16. Hajat A, 2013, ENVIRON HEALTH PERSP, V121, P1325, DOI 10.1289/ehp.1206337
  17. Harre ESM, 1997, THORAX, V52, P1040
  18. Heo J, 2014, EPIDEMIOLOGY, V25, P379, DOI 10.1097/EDE.0000000000000044
  19. Jerrett M, 2005, EPIDEMIOLOGY, V16, P727, DOI 10.1097/01.ede.0000181630.15826.7d
  20. Jerrett M, 2013, AM J RESP CRIT CARE, V188, P593, DOI 10.1164/rccm.201303-0609OC
  21. Lippmann M, 2013, RES REP HLTH EFF I, V177, P5
  22. Loomis D, 2013, LANCET ONCOL, V14, P1262, DOI 10.1016/S1470-2045(13)70487-X
  23. Moreira TCL, 2016, ENVIRON INT, V91, P271, DOI 10.1016/j.envint.2016.03.005
  24. Mariani RL, 2009, ENVIRON POLLUT, V157, P1767, DOI 10.1016/j.envpol.2009.02.023
  25. Marshall JD, 2014, ENVIRON SCI TECHNOL, V48, P4063, DOI 10.1021/es405167f
  26. Martins MCH, 2004, J EPIDEMIOL COMMUN H, V58, P41, DOI 10.1136/jech.58.1.41
  27. Micieta K, 1996, ENVIRON EXP BOT, V36, P21, DOI 10.1016/0098-8472(95)00050-X
  28. Misik M, 2006, MUTAT RES-GEN TOX EN, V605, P1, DOI 10.1016/j.mrgentox.2005.12.009
  29. Misik M, 2007, ENVIRON POLLUT, V145, P459, DOI 10.1016/j.envpol.2006.04.026
  30. O'Neill MS, 2003, ENVIRON HEALTH PERSP, V111, P1861, DOI 10.1289/ehp.6334
  31. POPE CA, 1993, AM REV RESPIR DIS, V147, P1336
  32. Sawidis T, 2011, ENVIRON POLLUT, V159, P3560, DOI 10.1016/j.envpol.2011.08.008
  33. Schauer J.J., 2006, HLTH EFFECT I, V133, P1
  34. Schelle E, 2008, ENVIRON POLLUT, V155, P164, DOI 10.1016/j.envpol.2007.10.036
  35. Schulz H, 1999, SCI TOTAL ENVIRON, V232, P49, DOI 10.1016/S0048-9697(99)00109-6
  36. SHARMA AK, 1968, CYTOLOGIA, V33, P411
  37. Silkoff PE, 2005, J ALLERGY CLIN IMMUN, V115, P337, DOI 10.1016/j.jaci.2004.11.035
  38. Sunyer J, 2001, INT J EPIDEMIOL, V30, P1138, DOI 10.1093/ije/30.5.1138
  39. Suzuki K, 2006, ATMOS ENVIRON, V40, P2626, DOI 10.1016/j.atmosenv.2005.12.022
  40. USDHHS (U. S. Department of Health and Human Services), 2014, HLTH CONS SMOK 50 YE
  41. WHO, 2013, TECHNICAL REPORT