Vascular remodeling: A redox-modulated mechanism of vessel caliber regulation

Carregando...
Imagem de Miniatura
Citações na Scopus
33
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCIENCE INC
Citação
FREE RADICAL BIOLOGY AND MEDICINE, v.109, Special Issue, p.11-21, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Vascular remodeling, i.e. whole-vessel structural reshaping, determines lumen caliber in (patho) physiology. Here we review mechanisms underlying vessel remodeling, with emphasis in redox regulation. First, we discuss confusing terminology and focus on strictu sensu remodeling. Second, we propose a mechanobiological remodeling paradigm based on the concept of tensional homeostasis as a setpoint regulator. We first focus on shear-mediated models as prototypes of remodeling closely dominated by highly redox-sensitive endothelial function. More detailed discussions focus on mechanosensors, integrins, extracellular matrix, cytoskeleton and inflammatory pathways as potential of mechanisms potentially coupling tensional homeostasis to redox regulation. Further discussion of remodeling associated with atherosclerosis and injury repair highlights important aspects of redox vascular responses. While neointima formation has not shown consistent responsiveness to antioxidants, vessel remodeling has been more clearly responsive, indicating that despite the multilevel redox signaling pathways, there is a coordinated response of the whole vessel. Among mechanisms that may orchestrate redox pathways, we discuss roles of superoxide dismutase activity and extracellular protein disulfide isomerase. We then discuss redox modulation of aneurysms, a special case of expansive remodeling. We propose that the redox modulation of vascular remodeling may reflect (1) remodeling pathophysiology is dominated by a particularly redox-sensitive cell type, e.g., endothelial cells (2) redox pathways are temporospatially coordinated at an organ level across distinct cellular and acellular structures or (3) the tensional homeostasis setpoint is closely connected to redox signaling. The mechanobiological/redox model discussed here can be a basis for improved understanding of remodeling and helps clarifying mechanisms underlying prevalent hard-to-treat diseases.
Palavras-chave
Vascular remodeling, Redox signaling, Endothelial cell, Nitric oxide, NADPH oxidase, Protein disulfide isomerase
Referências
  1. Aghajanian A, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0008045
  2. Ai L, 2008, AM J PHYSIOL-CELL PH, V294, pC1576, DOI 10.1152/ajpcell.00518.2007
  3. Ali ZA, 2014, J CLIN INVEST, V124, P5159, DOI 10.1172/JCI77484
  4. Aoki T, 2009, LAB INVEST, V89, P730, DOI 10.1038/labinvest.2009.36
  5. Azevedo LCP, 2000, CARDIOVASC RES, V47, P436, DOI 10.1016/S0008-6363(00)00091-2
  6. Baeyens N, 2016, MOL BIOL CELL, V27, P7, DOI 10.1091/mbc.E14-11-1522
  7. Banning AP, 1999, ATHEROSCLEROSIS, V145, P17, DOI 10.1016/S0021-9150(99)00010-6
  8. Barman SA, 2014, ARTERIOSCL THROM VAS, V34, P1704, DOI 10.1161/ATVBAHA.114.303848
  9. Belkin AM, 2011, FEBS J, V278, P4704, DOI 10.1111/j.1742-4658.2011.08346.x
  10. Bhave G, 2012, NAT CHEM BIOL, V8, P784, DOI [10.1038/nchembio.1038, 10.1038/NCHEMBIO.1038]
  11. Boo YC, 2002, J BIOL CHEM, V277, P3388, DOI 10.1074/jbc.M108789200
  12. Borges BE, 2015, BBA-MOL BASIS DIS, V1852, P1334, DOI 10.1016/j.bbadis.2015.03.002
  13. Brandes RP, 2014, ANTIOXID REDOX SIGN, V20, P887, DOI 10.1089/ars.2013.5414
  14. Brandes RP, 2011, CARDIOVASC RES, V91, P1, DOI 10.1093/cvr/cvr120
  15. BROWN PL, 1992, BIOCHEM BIOPH RES CO, V186, P549, DOI 10.1016/S0006-291X(05)80843-5
  16. Burgoyne JR, 2007, SCIENCE, V317, P1393, DOI 10.1126/science.1144318
  17. BYERS PH, 1975, P NATL ACAD SCI USA, V72, P3009, DOI 10.1073/pnas.72.8.3009
  18. Cai H, 2001, ARTERIOSCL THROM VAS, V21, P1571, DOI 10.1161/hq1001.097028
  19. Castier Y, 2005, CIRC RES, V97, P533, DOI 10.1161/01.RES.0000181759.63239.21
  20. Cheng GJ, 2008, FREE RADICAL BIO MED, V45, P1682, DOI 10.1016/j.freeradbiomed.2008.09.009
  21. Collins C, 2012, CURR BIOL, V22, P2087, DOI 10.1016/j.cub.2012.08.051
  22. Cote G, 1999, CIRCULATION, V99, P30
  23. Cox D, 2010, NAT REV DRUG DISCOV, V9, P804, DOI 10.1038/nrd3266
  24. Csanyi G, 2009, FREE RADICAL BIO MED, V47, P1254, DOI 10.1016/j.freeradbiomed.2009.07.022
  25. Dai GH, 2004, P NATL ACAD SCI USA, V101, P14871, DOI 10.1073/pnas.0406073101
  26. Dajnowiec D, 2007, CLIN SCI, V113, P15, DOI 10.1042/CS200602337
  27. Datla SR, 2014, AM J PHYSIOL-HEART C, V307, pH945, DOI 10.1152/ajpheart.00918.2013
  28. DAVIES PF, 1995, PHYSIOL REV, V75, P519
  29. Davignon J, 2004, CIRCULATION, V109, P27, DOI 10.1016/01.CIR.0000131515.03336.f8
  30. De Keulenaer GW, 1998, CIRC RES, V82, P1094
  31. Niland S., 2012, BIOL MED, V53, P521
  32. Dimmeler S, 1999, NATURE, V399, P601
  33. Dinenno FA, 2001, J PHYSIOL-LONDON, V534, P287, DOI 10.1111/j.1469-7793.2001.00287.x
  34. Duerrschmidt N, 2006, J PHYSIOL-LONDON, V576, P557, DOI 10.1113/jphysiol.2006.111070
  35. Eble JA, 2014, ANTIOXID REDOX SIGN, V20, P1977, DOI 10.1089/ars.2013.5294
  36. Ejiri J, 2003, CARDIOVASC RES, V59, P988, DOI 10.1016/S0008-6363(03)00523-6
  37. ELBENNA J, 1994, J BIOL CHEM, V269, P6729
  38. Essex DW, 2009, ANTIOXID REDOX SIGN, V11, P1191, DOI 10.1089/ARS.2008.2322
  39. Fan LM, 2014, CIRCULATION, V129, P2661, DOI 10.1161/CIRCULATIONAHA.113.005062
  40. Fernandes DC, 2009, ARCH BIOCHEM BIOPHYS, V484, P197, DOI 10.1016/j.abb.2009.01.022
  41. Flaumenhaft R., 2014, ARTERIOSCLER THROMB
  42. Flaumenhaft R, 2016, BLOOD, V128, P893, DOI 10.1182/blood-2016-04-636456
  43. Furuno Y, 2011, NITRIC OXIDE-BIOL CH, V25, P350, DOI 10.1016/j.niox.2011.06.007
  44. Galis ZS, 2002, CIRC RES, V90, P251, DOI 10.1161/hh0302.105345
  45. Gavazzi G, 2007, HYPERTENSION, V50, P189, DOI 10.1161/HYPERTENSIONAHA.107.089706
  46. Gellert M, 2015, BBA-GEN SUBJECTS, V1850, P1575, DOI 10.1016/j.bbagen.2014.10.030
  47. GLAGOV S, 1987, NEW ENGL J MED, V316, P1371, DOI 10.1056/NEJM198705283162204
  48. Go YM, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0108346
  49. Goldyn AM, 2009, J CELL SCI, V122, P3644, DOI 10.1242/jcs.054866
  50. Gurjar MV, 1999, ARTERIOSCL THROM VAS, V19, P2871
  51. Guzik B, 2013, INT J CARDIOL, V168, P2389, DOI 10.1016/j.ijcard.2013.01.278
  52. Hahm E, 2013, BLOOD, V121, P3789, DOI 10.1182/blood-2012-11-467985
  53. Hahn C, 2009, NAT REV MOL CELL BIO, V10, P53, DOI 10.1038/nrm2596
  54. Hassan AHM, 2001, J AM COLL CARDIOL, V38, P1333, DOI 10.1016/S0735-1097(01)01569-8
  55. Hobbs G. A., 2014, SMALL GTPASES, V5, DOI 10.4161/SGTP.28579
  56. Hoffman BD, 2011, NATURE, V475, P316, DOI 10.1038/nature10316
  57. Hollestelle SCG, 2004, CIRCULATION, V109, P393, DOI 10.1161/01.CIR.0000109140.51366.72
  58. Hordijk PL, 2006, CIRC RES, V98, P453, DOI 10.1161/01.RES.0000204727.46710.5e
  59. Hsiai T. K., 2007, BIOL MED, V42, P519
  60. Humphrey JD, 2015, CIRC RES, V116, P1448, DOI 10.1161/CIRCRESAHA.114.304936
  61. Humphrey JD, 2014, NAT REV MOL CELL BIO, V15, P802, DOI 10.1038/nrm3896
  62. Humphrey JD, 2014, SCIENCE, V344, P476, DOI 10.1126/science.1253026
  63. Hwang J, 2003, J BIOL CHEM, V278, P47291, DOI 10.1074/jbc.M305150200
  64. Ilani T, 2013, SCIENCE, V341, P74, DOI 10.1126/science.1238279
  65. Inaba S, 2009, AM J HYPERTENS, V22, P145, DOI 10.1038/ajh.2008.344
  66. Inoue N, 1996, CIRC RES, V79, P32
  67. Jacobson GM, 2003, CIRC RES, V92, P637, DOI 10.1161/01.RES.0000063423.94645.8A
  68. Jandu SK, 2013, AMINO ACIDS, V44, P261, DOI 10.1007/s00726-011-1090-0
  69. Janiszewski M, 2004, CRIT CARE MED, V32, P818, DOI 10.1097/01.CCM.0000114829.17746.19
  70. Jialal I, 2003, CIRCULATION, V107, P926, DOI 10.1161/01.CIR.0000048966.26216.4C
  71. Jordan PA, 2006, ANTIOXID REDOX SIGN, V8, P312, DOI 10.1089/ars.2006.8.312
  72. Katsumi A, 2004, J BIOL CHEM, V279, P12001, DOI 10.1074/jbc.R300038200
  73. Khatri JJ, 2004, CIRCULATION, V109, P520, DOI 10.1161/01.CIR.0000109698.70638.2B
  74. Kigawa Y, 2014, ARTERIOSCL THROM VAS, V34, P2413, DOI 10.1161/ATVBAHA.114.303086
  75. Korshunov VA, 2004, CIRCULATION, V110, P220, DOI 10.1161/01.CIR.0000134958.88379.2E
  76. Korshunov VA, 2003, ARTERIOSCL THROM VAS, V23, P2185, DOI 10.1161/01.ATV.0000103120.06092.14
  77. Korshunov VA, 2007, ARTERIOSCL THROM VAS, V27, P1722, DOI 10.1161/ATVBAHA.106.129254
  78. Kuhlencordt PJ, 2001, CIRCULATION, V104, P448, DOI 10.1161/hc2901.091399
  79. Kumar S, 2010, AM J PHYSIOL-LUNG C, V298, pL105, DOI 10.1152/ajplung.00290.2009
  80. Kwak BR, 2014, EUR HEART J, V35, P3013, DOI 10.1093/eurheartj/ehu353
  81. Lafont A, 1999, CIRCULATION, V100, P1109
  82. LAFONT A, 1995, CIRC RES, V76, P996
  83. LANGILLE BL, 1986, SCIENCE, V231, P405, DOI 10.1126/science.3941904
  84. LANGILLE BL, 1991, ARTERIOSCLER THROMB, V11, P1814
  85. LANGILLE BL, 1989, AM J PHYSIOL, V256, pH931
  86. Lassegue B., 2010, ARTERIOSCLER THROMB, P653
  87. Lassegue B, 2012, CIRC RES, V110, P1364, DOI 10.1161/CIRCRESAHA.111.243972
  88. Lauer N, 2005, CARDIOVASC RES, V65, P254, DOI 10.1016/j.cardiores.2004.09.010
  89. Laurindo FRM, 2012, FREE RADICAL BIO MED, V52, P1954, DOI 10.1016/j.freeradbiomed.2012.02.037
  90. LAURINDO FRM, 1994, CIRC RES, V74, P700
  91. Lee MY, 2009, ARTERIOSCL THROM VAS, V29, P480, DOI 10.1161/ATVBAHA.108.181925
  92. Lei L, 2008, MOL CELL BIOL, V28, P794, DOI 10.1128/MCB.00443-07
  93. Leite PF, 2004, WORLD J SURG, V28, P331, DOI 10.1007/s00268-003-7399-4
  94. Leite PF, 2003, ARTERIOSCL THROM VAS, V23, P2197, DOI 10.1161/01.ATV.0000093980.46838.41
  95. Lessner SM, 2004, ARTERIOSCL THROM VAS, V24, P2123, DOI 10.1161/01.ATV.0000141840.27300.fd
  96. Li J, 2014, NATURE, V515, P279, DOI 10.1038/nature13701
  97. Liang S, 2016, FRONT PHYSIOL, V7, DOI 10.3389/fphys.2016.00017
  98. Liao MF, 2008, J THORAC CARDIOV SUR, V136, P65, DOI 10.1016/j.jtcvs.2007.11.017
  99. Liu XH, 2016, FREE RADICAL BIO MED, V94, P174, DOI 10.1016/j.freeradbiomed.2016.02.031
  100. Liu ZY, 2012, CIRC RES, V111, P1261, DOI 10.1161/CIRCRESAHA.112.270520
  101. Lu WW, 2016, ARTERIOSCL THROM VAS, V36, P2176, DOI 10.1161/ATVBAHA.116.307825
  102. McCormick ML, 2007, ARTERIOSCL THROM VAS, V27, P461, DOI 10.1161/01.ATV.0000257552.94483.14
  103. McNally JS, 2003, AM J PHYSIOL-HEART C, V285, pH2290, DOI 10.1152/ajpheart.00515.2003
  104. Milewicz D. M., 2016, ARTERIOSCLER THROMB
  105. Miller FJ, 2002, ARTERIOSCL THROM VAS, V22, P560, DOI 10.1161/01.ATV.0000013778.72404.30
  106. Montenegro MF, 2015, FREE RADICAL BIO MED, V85, P288, DOI 10.1016/j.freeradbiomed.2015.05.011
  107. Moretti A. I. Soares, 2016, ARCH BIOCH BIOPHYS
  108. Morishita T, 2002, FASEB J, V16, P1994, DOI 10.1096/fj.02-0155fje
  109. Mowbray AL, 2008, J BIOL CHEM, V283, P1622, DOI 10.1074/jbc.M707985200
  110. Mulvany MJ, 1996, HYPERTENSION, V28, P505
  111. Murphy MP, 2011, CELL METAB, V13, P361, DOI 10.1016/j.cmet.2011.03.010
  112. Nam D, 2009, AM J PHYSIOL-HEART C, V297, pH1535, DOI 10.1152/ajpheart.00510.2009
  113. Nigro P, 2011, ANTIOXID REDOX SIGN, V15, P1405, DOI 10.1089/ars.2010.3679
  114. Niu XL, 2010, CIRCULATION, V121, P549, DOI 10.1161/CIRCULATIONAHA.109.908319
  115. Nosalski R, 2017, BR J PHARM
  116. O'Sullivan S, 2014, BBA-MOL CELL RES, V1843, P603, DOI 10.1016/j.bbamcr.2013.12.006
  117. Onetti Y, 2016, AM J PHYSIOL-HEART C, V310, pH1081, DOI 10.1152/ajpheart.00770.2015
  118. Osol G, 2009, PHYSIOLOGY, V24, P58, DOI 10.1152/physiol.00033.2008
  119. PANZA JA, 1990, NEW ENGL J MED, V323, P22, DOI 10.1056/NEJM199007053230105
  120. Pasterkamp G, 1998, J AM COLL CARDIOL, V32, P655, DOI 10.1016/S0735-1097(98)00304-0
  121. Pasterkamp G, 2000, CARDIOVASC RES, V45, P843, DOI 10.1016/S0008-6363(99)00377-6
  122. PASTERKAMP G, 1995, CIRCULATION, V91, P1444
  123. Pasterkamp G, 2004, ARTERIOSCL THROM VAS, V24, P650, DOI 10.1161/01.ATV.0000120376.09047.fe
  124. Patel VB, 2013, CIRC RES, V112, P1542, DOI 10.1161/CIRCRESAHA.111.300299
  125. Pedrigi RM, 2015, CIRCULATION, V132, P1003, DOI 10.1161/CIRCULATIONAHA.115.016270
  126. Pescatore LA, 2012, J BIOL CHEM, V287, P29290, DOI 10.1074/jbc.M112.394551
  127. Phillippi JA, 2009, CIRCULATION, V119, P2498, DOI 10.1161/CIRCULATIONAHA.108.770776
  128. POST MJ, 1994, CIRCULATION, V89, P2816
  129. Qian J, 2013, FRONT PHYSIOL, V4, DOI 10.3389/fphys.2013.00347
  130. Ra HJ, 2007, MATRIX BIOL, V26, P587, DOI 10.1016/j.matbio.2007.07.001
  131. Ramos-Mozo P, 2011, ARTERIOSCL THROM VAS, V31, P3011, DOI 10.1161/ATVBAHA.111.237537
  132. Ray R, 2011, ARTERIOSCL THROM VAS, V31, P1368, DOI 10.1161/ATVBAHA.110.219238
  133. Reinhardt DP, 2000, J BIOL CHEM, V275, P2205, DOI 10.1074/jbc.275.3.2205
  134. Rodes J, 1998, CIRCULATION, V97, P429
  135. San Martin A, 2010, ANTIOXID REDOX SIGN, V12, P625, DOI 10.1089/ars.2009.2852
  136. Santos CXC, 2009, J LEUKOCYTE BIOL, V86, P989, DOI 10.1189/jlb.0608354
  137. Schiffers PMH, 2000, ARTERIOSCL THROM VAS, V20, P611
  138. SCHNEIDER JE, 1993, CIRCULATION, V88, P628
  139. Schroder K, 2012, CIRC RES, V110, P1217, DOI 10.1161/CIRCRESAHA.112.267054
  140. Schurmann C, 2015, EUR HEART J, V36, P3447, DOI 10.1093/eurheartj/ehv460
  141. Sharma AK, 2016, ARTERIOSCL THROM VAS, V36, P908, DOI 10.1161/ATVBAHA.116.307373
  142. Siu KL, 2017, REDOX BIOL, V11, P118, DOI 10.1016/j.redox.2016.11.002
  143. Siu KL, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0088899
  144. Souza HP, 2000, FREE RADICAL BIO MED, V28, P1232, DOI 10.1016/S0891-5849(00)00240-9
  145. Standley PR, 2002, AM J PHYSIOL-HEART C, V283, pH1907, DOI 10.1152/ajpheart.01043.2001
  146. Stanic B, 2010, ARTERIOSCL THROM VAS, V30, P2234, DOI 10.1161/ATVBAHA.110.207639
  147. Stocker R, 2004, PHYSIOL REV, V84, P1381, DOI 10.1152/physrev.00047.2003
  148. Sutliff RL, 2013, ARTERIOSCL THROM VAS, V33, P2154, DOI 10.1161/ATVBAHA.113.301913
  149. Szocs K, 2002, ARTERIOSCL THROM VAS, V22, P21, DOI 10.1161/hq0102.102189
  150. Takabe W, 2011, ANTIOXID REDOX SIGN, V15, P1415, DOI 10.1089/ars.2010.3433
  151. Takeshita S, 2000, BIOCHEM BIOPH RES CO, V273, P66, DOI 10.1006/bbrc.2000.2898
  152. Tanaka LY, 2016, HYPERTENSION, V67, P613, DOI 10.1161/HYPERTENSIONAHA.115.06177
  153. Tang PCY, 2008, J EXP MED, V205, P3159, DOI 10.1084/jem.20081298
  154. Tardif JC, 1997, NEW ENGL J MED, V337, P365, DOI 10.1056/NEJM199708073370601
  155. Thomas M, 2006, CIRCULATION, V114, P404, DOI 10.1161/CIRCULATIONAHA.105.607168
  156. Thomas SR, 2002, J BIOL CHEM, V277, P6017, DOI 10.1074/jbc.M109107200
  157. Tong XY, 2010, CIRC RES, V107, P975, DOI 10.1161/CIRCRESAHA.110.221242
  158. Tong XY, 2015, J MOL CELL CARDIOL, V89, P185, DOI 10.1016/j.yjmcc.2015.11.013
  159. Tronc F, 2000, ARTERIOSCL THROM VAS, V20, pE120
  160. Tronc F, 1996, ARTERIOSCL THROM VAS, V16, P1256
  161. van den Akker J, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0023067
  162. Ward MR, 2000, CIRCULATION, V102, P1186
  163. Watt J, 2008, CLIN SCI, V114, P265, DOI 10.1042/CS20070207
  164. Weber M, 2005, CIRC RES, V96, P1161, DOI 10.1161/01.RES.0000170651.72198.fa
  165. Wojciak-Stothard B, 2003, J CELL BIOL, V161, P429, DOI 10.1083/jcb.200210135
  166. Woo HA, 2010, CELL, V140, P517, DOI 10.1016/j.cell.2010.01.009
  167. Xu QB, 2006, NAT CLIN PRACT CARD, V3, P94, DOI 10.1038/ncpcardio0396
  168. Yang H, 2004, CIRC RES, V95, P1075, DOI 10.1161/01.RES.0000149564.49410.0d
  169. Yang HHC, 2010, VASC PHARMACOL, V52, P37, DOI 10.1016/j.vph.2009.10.005
  170. Yang Y, 2007, P NATL ACAD SCI USA, V104, P10813, DOI 10.1073/pnas.0702027104
  171. Yogo K, 2000, ARTERIOSCL THROM VAS, V20, pE96
  172. Yoo SK, 2011, NATURE, V480, P109, DOI 10.1038/nature10632
  173. Zhang HJ, 2002, J BIOL CHEM, V277, P20919, DOI 10.1074/jbc.M109801200
  174. Zhang Q, 2008, ARTERIOSCL THROM VAS, V28, P1627, DOI 10.1161/ATVBAHA.108.168278
  175. Zhang YJ, 2006, ARTERIOSCL THROM VAS, V26, P1281, DOI 10.1161/01.ATV.0000221230.08596.98