Effect of correcting for gestational age at birth on population prevalence of early childhood undernutrition

Carregando...
Imagem de Miniatura
Citações na Scopus
9
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
BIOMED CENTRAL LTD
Autores
PERUMAL, Nandita
ROTH, Daniel E.
PERDRIZET, Johnna
BARROS, Aluisio J. D.
SANTOS, Ina S.
BASSANI, Diego G.
Citação
EMERGING THEMES IN EPIDEMIOLOGY, v.15, article ID 3, 13p, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Postmenstrual and/or gestational age-corrected age (CA) is required to apply child growth standards to children born preterm (< 37 weeks gestational age). Yet, CA is rarely used in epidemiologic studies in low-and middle-income countries (LMICs), which may bias population estimates of childhood undernutrition. To evaluate the effect of accounting for GA in the application of growth standards, we used GA-specific standards at birth (INTERGROWTH-21st newborn size standards) in conjunction with CA for preterm-born children in the application of World Health Organization Child Growth Standards postnatally (referred to as 'CA' strategy) versus postnatal age for all children, to estimate mean length-for-age (LAZ) and weight-for-age (WAZ) z scores at 0, 3, 12, 24, and 48-months of age in the 2004 Pelotas (Brazil) Birth Cohort. Results: At birth (n = 4066), mean LAZ was higher and the prevalence of stunting (LAZ < -2) was lower using CA versus postnatal age (mean +/- SD): -0.36 +/- 1.19 versus -0.67 +/- 1.32; and 8.3 versus 11.6%, respectively. Odds ratio (OR) and population attributable risk (PAR) of stunting due to preterm birth were attenuated and changed inferences using CA versus postnatal age at birth [OR, 95% confidence interval (CI): 1.32 (95% CI 0.95, 1.82) vs 14.7 (95% CI 11.7, 18.4); PAR 3.1 vs 42.9%]; differences in inferences persisted at 3-months. At 12, 24, and 48-months, preterm birth was associated with stunting, but ORs/PARs remained attenuated using CA compared to postnatal age. Findings were similar for weight-for-age z scores. Conclusions: Population-based epidemiologic studies in LMICs in which GA is unused or unavailable may overestimate the prevalence of early childhood undernutrition and inflate the fraction of undernutrition attributable to preterm birth.
Palavras-chave
World Health Organization Growth Standards (WHO-GS), Gestational age, Growth, Preterm birth, Pediatrics, INTERGROWTH newborn size standard
Referências
  1. Adair LS, 2013, LANCET, V382, P525, DOI 10.1016/S0140-6736(13)60103-8
  2. Alderman H, 2009, ECON DEV CULT CHANGE, V57, P239, DOI 10.1086/592875
  3. BARKER DJP, 1989, BRIT MED J, V298, P564, DOI 10.1136/bmj.298.6673.564
  4. Barros AJD, 2006, REV SAUDE PUBL, V40, P402, DOI 10.1590/s0034-89102006000300007
  5. Black RE, 2008, LANCET, V371, P243, DOI 10.1016/S0140-6736(07)61690-0
  6. Black RE, 2013, LANCET, V382, P427, DOI 10.1016/S0140-6736(13)60937-X
  7. Blackmon LR, 2004, PEDIATRICS, V114, P1362, DOI 10.1542/peds.2004-1915
  8. Blencowe H, 2012, LANCET, V379, P2162, DOI 10.1016/S0140-6736(12)60820-4
  9. CHEN LC, 1980, AM J CLIN NUTR, V33, P1836
  10. Christian P, 2013, INT J EPIDEMIOL, V42, P1340, DOI 10.1093/ije/dyt109
  11. Committee on Obstetric Practice American Institute of Ultrasound in Medicine Society for Maternal-Fetal Medicine, 2014, OBSTET GYNECOL, V24, P863
  12. Danaei G, 2016, PLOS MED, V13, DOI 10.1371/journal.pmed.1002164
  13. de Onis M, 2012, PUBLIC HEALTH NUTR, V15, P1603, DOI 10.1017/S136898001200105X
  14. de Onis M, 2004, FOOD NUTR B S, V25, pS15
  15. Dietitions of Canada Canadian Paediatric Society, 2010, COLL PUBL POL STAT
  16. Fenton TR, 2013, BMC PEDIATR, V13, DOI 10.1186/1471-2431-13-59
  17. Grantham-McGregor S, 2007, LANCET, V369, P60, DOI 10.1016/S0140-6736(07)60032-4
  18. Horton S, 2013, HOW MUCH HAVE GLOBAL PROBLEMS COST THE WORLD?: A SCORECARD FROM 1900 TO 2050, P247
  19. Joseph KS, 2011, REPROD PERINATAL EPI
  20. Perumal N, 2015, J NUTR, V145, P2429, DOI 10.3945/jn.115.214064
  21. Rothman KJ, 2012, EPIDEMIOLOGY INTRO, P65
  22. Sania A, 2014, PAEDIATR PERINAT EP, V28, P23, DOI 10.1111/ppe.12085
  23. Santos IS, 2014, INT J EPIDEMIOL, V43, P1437, DOI 10.1093/ije/dyu144
  24. Santos IS, 2009, BMC PEDIATR, V9, DOI 10.1186/1471-2431-9-71
  25. Sherry B, 2003, PEDIATRICS, V111, P750, DOI 10.1542/peds.111.4.750
  26. Stein AD, 2013, J PEDIATR-US, V163, P1740, DOI 10.1016/j.jpeds.2013.08.012
  27. Stevens GA, 2012, LANCET, V380, P824, DOI 10.1016/S0140-6736(12)60647-3
  28. Villar J, 2010, ARCH DIS CHILD, V95, P1034, DOI 10.1136/adc.2009.175067
  29. Villar J, 2016, LANCET, V387, P844, DOI 10.1016/S0140-6736(16)00384-6
  30. Villar J, 2015, LANCET GLOB HEALTH, V3, pE681, DOI 10.1016/S2214-109X(15)00163-1
  31. Villar J, 2014, LANCET, V384, P857, DOI 10.1016/S0140-6736(14)60932-6
  32. Walker SP, 2007, INT J OBESITY, V31, P347, DOI 10.1038/sj.ijo.0803383
  33. Wang ZQ, 1998, CAN J PUBLIC HEALTH, V89, P109
  34. World Health Organization, 2011, CHILD GROWTH STAND W