Multimodality imaging evaluation of Chagas disease: an expert consensus of Brazilian Cardiovascular Imaging Department (DIC) and the European Association of Cardiovascular Imaging (EACVI)

Carregando...
Imagem de Miniatura
Citações na Scopus
48
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
OXFORD UNIV PRESS
Autores
NUNES, Maria Carmo P.
BADANO, Luigi Paolo
MARIN-NETO, J. Antonio
EDVARDSEN, Thor
FERNANDEZ-GOLFIN, Covadonga
BUCCIARELLI-DUCCI, Chiara
POPESCU, Bogdan A.
UNDERWOOD, Richard
HABIB, Gilbert
ZAMORANO, Jose Luis
Citação
EUROPEAN HEART JOURNAL-CARDIOVASCULAR IMAGING, v.19, n.4, p.459-+, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Aims To develop a document by Brazilian Cardiovascular Imaging Department (DIC) and the European Association of Cardiovascular Imaging (EACVI) to review and summarize the most recent evidences about the non-invasive assessment of patients with Chagas disease, with the intent to set up a framework for standardized cardiovascular imaging to assess cardiovascular morphologic and functional disturbances, as well as to guide the subsequent process of clinical decision-making. Methods and results Chagas disease remains one of the most prevalent infectious diseases in Latin America, and has become a health problem in non-endemic countries. Dilated cardiomyopathy is the most severe manifestation of Chagas disease, which causes substantial disability and early mortality in the socially most productive population leading to a significant economical burden. Prompt and correct diagnosis of Chagas disease requires specialized clinical expertise to recognize the unique features of this disease. The appropriate and efficient use of cardiac imaging is pivotal for diagnosing the cardiac involvement in Chagas disease, to stage the disease, assess patients' prognosis and address management. Echocardiography is the most common imaging modality used to assess, and follow-up patients with Chagas disease. The presence of echocardiographic abnormalities is of utmost importance, since it allows to stage patients according to disease progression. In early stages of cardiac involvement, echocardiography may demonstrate segmental left ventricuar wall motion abnormalities, mainly in the basal segments of inferior, inferolateral walls, and the apex, which cannot be attributed to obstructive coronary artery arteries. The prevalence of segmental wall motion abnormalities varies according to the stage of the disease, reaching about 50% in patients with left ventricular dilatation and dysfunction. Speckle tracking echocardiography allows a more precise and quantitative measurement of the regional myocardial function. Since segmental wall motion abnormalities are frequent in Chagas disease, speckle tracking echocardiography may have an important clinical application in these patients, particularly in the indeterminate forms when abnormalities are more subtle. Speckle tracking echocardiography can also quantify the heterogeneity of systolic contraction, which is associated with the risk of arrhythmic events. Three-dimensional (3D) echocardiography is superior to conventional two-dimensional (2D) echocardiography for assessing more accurately the left ventricular apex and thus to detect apical aneurysms and thrombus in patients in whom ventricular foreshortening is suspected by 2D echocardiography. In addition, 3D echocardiography is more accurate than 2D Simpson s biplane rule for assessing left ventricular volumes and function in patients with significant wall motion abnormalities, including aneurysms with distorted ventricular geometry. Contrast echocardiography has the advantage to enhancement of left ventricular endocardial border, allowing for more accurate detection of ventricular aneurysms and thrombus in Chagas disease. Diastolic dysfunction is an important hallmark of Chagas disease even in its early phases. In general, left ventricular diastolic and systolic dysfunction coexist and isolated diastolic dysfunction is uncommon but may be present in patients with the indeterminate form. Right ventricular dysfunction may be detected early in the disease course, but in general, the clinical manifestations occur late at advanced stages of Chagas cardiomyopathy. Several echocardiographic parameters have been used to assess right ventricular function in Chagas disease, including qualitative evaluation, myocardial performance index, tissue Doppler imaging, tricuspid annular plane systolic excursion, and speckle tracking strain. Cardiac magnetic resonance (CMR) is useful to assess global and regional left ventricular function in patients with Chagas diseases. Myocardial fibrosis is a striking feature of Chagas cardiomyopathy and late gadolinium enhancement (LGE) is used to detect and quantify the extension of myocardial fibrosis. Myocardial fibrosis might have a role in risk stratification of patients with Chagas disease. Limited data are available regarding right ventricular function assessed by CMR in Chagas disease. Radionuclide ventriculography is used for global biventricular function assessment in patients with suspected or definite cardiac involvement in Chagas disease with suboptimal acoustic window and contraindication to CMR. Myocardial perfusion scintigraphy may improve risk stratification to define cardiac involvement in Chagas disease, especially in the patients with devices who cannot be submitted to CMR and in the clinical setting of Chagas patients whose main complaint is atypical chest pain. Detection of reversible ischemic defects predicts further deterioration of left ventricular systolic function and helps to avoid unnecessary cardiac catheterization and coronary angiography. Conclusion Cardiac imaging is crucial to detect the cardiac involvement in patients with Chagas disease, stage the disease and stratify patient risk and address management. Unfortunately, most patients live in regions with limited access to imaging methods and point-of-care, simplified protocols, could improve the access of these remote populations to important information that could impact in the clinical management of the disease. Therefore, there are many fields for further research in cardiac imaging in Chagas disease. How to better provide an earlier diagnosis of cardiac involvement and improve patients risk stratification remains to be addressed using different images modalities.
Palavras-chave
Chagas disease, Chagas cardiomyopathy, echocardiography, three-dimensional echocardiography, speckle tracking echocardiography, cardiac magnetic resonance, nuclear cardiology, radionuclide ventriculography, myocardial sympathetic innervation
Referências
  1. Acquatella H, 1999, J AM COLL CARDIOL, V33, P522, DOI 10.1016/S0735-1097(98)00569-5
  2. Acquatella H, 2007, CIRCULATION, V115, P1124, DOI 10.1161/CIRCULATIONAHA.106.627323
  3. Amundsen BH, 2006, J AM COLL CARDIOL, V47, P789, DOI 10.1016/j.jacc.2005.10.040
  4. Andrade Jadelson Pinheiro de, 2011, Arq Bras Cardiol, V96, P434
  5. Angheben A, 2015, BLOOD TRANSFUS-ITALY, V13, P540, DOI 10.2450/2015.0040-15
  6. Badano LP, 2015, EUR HEART J-CARD IMG, V16, P919, DOI 10.1093/ehjci/jev139
  7. Barbosa MM, 2007, EUR J ECHOCARDIOGR, V8, P204, DOI 10.1016/j.euje.2006.03.011
  8. Barbosa MM, 2014, ECHOCARDIOGR-J CARD, V31, P623, DOI 10.1111/echo.12426
  9. Barbosa PRB, 2007, BRAZ J MED BIOL RES, V40, P167, DOI 10.1590/S0100-879X2006005000061
  10. Barros HVL, 2001, J AM SOC ECHOCARDIOG, V14, P353, DOI 10.1067/mje.2001.111155
  11. Barros M V L, 2004, Eur J Echocardiogr, V5, P182, DOI 10.1016/S1525-2167(03)00078-7
  12. Barros ML, 2011, REV SOC BRAS MED TRO, V44, P213, DOI [10.1590/S0037-86822011005000020, 10.1590/s0037-86822011005000020]
  13. Barros MVL, 2016, J AM SOC ECHOCARDIOG, V29, P368, DOI 10.1016/j.echo.2015.12.008
  14. Barros MV, 2001, EUR J ECHOCARDIOGR, V2, P94
  15. Barros MVL, 2002, J AM SOC ECHOCARDIOG, V15, P1197, DOI 10.1067/mje.2002.122966
  16. Barros MVL, 2001, ECHOCARDIOGR-J CARD, V18, P131, DOI 10.1046/j.1540-8175.2001.00131.x
  17. Bestetti RB, 2011, INT J CARDIOL, V151, P205, DOI 10.1016/j.ijcard.2010.05.033
  18. Botoni FA, 2013, BIOMED RES INT, DOI 10.1155/2013/849504
  19. Camargo M E, 1986, Bull Pan Am Health Organ, V20, P233
  20. Coura JR, 2007, MEM I OSWALDO CRUZ, V102, P113, DOI 10.1590/S0074-02762007000900018
  21. Coura JR, 2010, NATURE, V465, pS6, DOI 10.1038/nature09221
  22. Ramirez JD, 2009, J CLIN MICROBIOL, V47, P3945, DOI 10.1128/JCM.01601-09
  23. Freitas HFG, 2005, INT J CARDIOL, V102, P239, DOI 10.1016/j.ijcard.2004.05.025
  24. Garcia-Alvarez A, 2010, PLOS NEGLECT TROP D, V4, DOI 10.1371/journal.pntd.0000826
  25. Gomes VAM, 2016, J AM SOC ECHOCARDIOG, V29, P679, DOI 10.1016/j.echo.2016.03.007
  26. HAGAR JM, 1991, NEW ENGL J MED, V325, P763, DOI 10.1056/NEJM199109123251103
  27. Hasselberg NE, 2016, EUR HEART J-CARD IMG, V17, P343, DOI 10.1093/ehjci/jev173
  28. Higuchi MD, 1999, HEART, V82, P279, DOI 10.1136/hrt.82.3.279
  29. Hiss FC, 2009, JACC-CARDIOVASC IMAG, V2, P164, DOI 10.1016/j.jcmg.2008.09.012
  30. Issa VS, 2010, CIRC-HEART FAIL, V3, P82, DOI 10.1161/CIRCHEARTFAILURE.109.882035
  31. Carod-Artal FJ, 2010, LANCET NEUROL, V9, P533, DOI 10.1016/S1474-4422(10)70042-9
  32. Koberle F., 1974, CIBA F SYMP, V20, P21
  33. Kuschnir E, 1974, ARQ BRAS CARDIOL, V27, P9
  34. Kuschnir E, 1974, ARQ BRAS CARDIOL, V27, P11
  35. Landesmann MCP, 2011, CLIN NUCL MED, V36, P757, DOI 10.1097/RLU.0b013e31821772a9
  36. Sarabanda AVL, 2011, PACE, V34, P54, DOI 10.1111/j.1540-8159.2010.02896.x
  37. Lima-Costa MF, 2010, STROKE, V41, P2477, DOI 10.1161/STROKEAHA.110.588061
  38. Marin-Neto J A, 1995, Sao Paulo Med J, V113, P826
  39. Marin-Neto J A, 1991, Arq Bras Cardiol, V57, P181
  40. Marin-Neto JA, 2015, CURR CARDIOVASC IMAG, V8, DOI 10.1007/s12410-015-9324-2
  41. Marin-Neto JA, 1998, INT J CARDIOL, V65, P261, DOI 10.1016/S0167-5273(98)00132-6
  42. Marin JA, 2007, CIRCULATION, V115, P1109, DOI 10.1161/CIRCULATIONAHA.106.624296
  43. Marin-Neto JA, 2013, REV SOC BRAS MED TRO, V46, P536, DOI 10.1590/0037-8682-0028-2013
  44. MARINNETO JA, 1992, AM J CARDIOL, V69, P780, DOI 10.1016/0002-9149(92)90505-S
  45. MARINNETO JA, 1988, CAN J CARDIOL, V4, P231
  46. Mello Ronaldo Peixoto de, 2012, Arq Bras Cardiol, V98, P421
  47. Ministerio da Saude. Secretaria de Vigilancia em Saude, 2005, Rev Soc Bras Med Trop, V38 Suppl 3, P7
  48. Miranda CH, 2011, J NUCL MED, V52, P504, DOI 10.2967/jnumed.110.082032
  49. Molina RBG, 2006, INT J CARDIOL, V113, P188, DOI 10.1016/j.ijcard.2005.11.010
  50. Moreira HT, 2017, CIRC-CARDIOVASC IMAG, V10, DOI 10.1161/CIRCIMAGING.116.005571
  51. MOTT KE, 1965, CIRCULATION, V31, P273
  52. Nascimento CAS, 2013, J AM SOC ECHOCARDIOG, V26, P1424, DOI 10.1016/j.echo.2013.08.018
  53. Nunes MCP, 2015, GLOB HEART, V10, P151, DOI 10.1016/j.gheart.2015.07.006
  54. Nunes MCP, 2011, INT J CARDIOL, V147, P294, DOI 10.1016/j.ijcard.2010.12.044
  55. Nunes MCP, 2009, J AM SOC ECHOCARDIOG, V22, P82, DOI 10.1016/j.echo.2008.11.015
  56. Nunes MCP, 2009, J NEUROL SCI, V278, P96, DOI 10.1016/j.jns.2008.12.015
  57. Nunes MDP, 2008, INT J CARDIOL, V127, P372, DOI 10.1016/j.ijcard.2007.06.012
  58. Nunes MP, 2012, J HEART LUNG TRANSPL, V31, P634, DOI 10.1016/j.healun.2012.01.865
  59. Nunes MDCP, 2004, INT J CARDIOL, V94, P79, DOI 10.1016/j.ijcard.2003.05.003
  60. Nunes MDP, 2005, J AM SOC ECHOCARDIOG, V18, P761, DOI 10.1016/j.echo.2005.01.026
  61. Oliveira BMR, 2009, ECHOCARDIOGR-J CARD, V26, P521, DOI 10.1111/j.1540-8175.2008.00842.x
  62. Oliveira E, 2002, INT J CARDIOL, V82, P49, DOI 10.1016/S0167-5273(01)00599-X
  63. Otani MM, 2009, TRANSFUSION, V49, P1076, DOI 10.1111/j.1537-2995.2009.02107.x
  64. Pazin A, 2006, BRAZ J MED BIOL RES, V39, P483, DOI 10.1590/S0100-879X2006000400008
  65. Pazin A, 2007, J AM SOC ECHOCARDIOG, V20, P1338, DOI 10.1016/j.echo.2007.04.029
  66. Peix A, 2013, ARQ BRAS CARDIOL, V100, P114, DOI 10.5935/abc.20130023
  67. Pereira CD, 2014, ARQ BRAS CARDIOL, V102, P602, DOI 10.5935/abc.20140068
  68. Nunes MCP, 2013, J AM COLL CARDIOL, V62, P767, DOI 10.1016/j.jacc.2013.05.046
  69. Nunes MCP, 2012, EXPERT REV CARDIOVAS, V10, P1173, DOI [10.1586/erc.12.111, 10.1586/ERC.12.111]
  70. Nunes MDP, 2010, EUR J ECHOCARDIOGR, V11, P590, DOI 10.1093/ejechocard/jeq022
  71. Nunes MDP, 2010, REV ESP CARDIOL, V63, P788, DOI 10.1016/S0300-8932(10)70181-0
  72. Duarte JDP, 2011, ARQ BRAS CARDIOL, V96, P300
  73. Ribeiro ALP, 2011, J CARDIOVASC ELECTR, V22, P799, DOI 10.1111/j.1540-8167.2010.02000.x
  74. Dias JCP, 2016, REV SOC BRAS MED TRO, V49, P3, DOI 10.1590/0037-8682-0505-2016
  75. Prata A, 2001, Lancet Infect Dis, V1, P92, DOI 10.1016/S1473-3099(01)00065-2
  76. Rassi A, 2000, CLIN CARDIOL, V23, P883
  77. Rassi A, 2007, CIRCULATION, V115, P1101, DOI 10.1161/CIRCULATIONAHA.106.627265
  78. Rassi A, 2006, NEW ENGL J MED, V355, P799, DOI 10.1056/NEJMoa053241
  79. Rassi A, 2009, MEM I OSWALDO CRUZ, V104, P152, DOI 10.1590/S0074-02762009000900021
  80. Rassi DD, 2014, ARQ BRAS CARDIOL, V102, P245, DOI 10.5935/abc.20140003
  81. Regueiro A, 2013, INT J CARDIOL, V165, P107, DOI 10.1016/j.ijcard.2011.07.089
  82. Requena-Mendez A, 2015, PLOS NEGLECT TROP D, V9, DOI 10.1371/journal.pntd.0003540
  83. Ribeiro A L, 1998, Rev Soc Bras Med Trop, V31, P301, DOI 10.1590/S0037-86821998000300008
  84. Ribeiro AL, 2013, PLOS NEGLECT TROP D, V7, DOI 10.1371/journal.pntd.0002078
  85. Ribeiro AL, 2012, NAT REV CARDIOL, V9, P576, DOI 10.1038/nrcardio.2012.109
  86. Ribeiro ALP, 2014, J AM HEART ASSOC, V3, DOI 10.1161/JAHA.113.000632
  87. Ribeiro ALP, 2008, J CARDIOVASC ELECTR, V19, P502, DOI 10.1111/j.1540-8167.2007.01088.x
  88. Rocha ALL, 2006, ANN NONINVAS ELECTRO, V11, P3, DOI 10.1111/j.1542-474X.2006.00054.x
  89. Rocha MOC, 2003, FRONT BIOSCI, V8, pE44, DOI 10.2741/926
  90. Rochitte CE, 2007, ARTIF ORGANS, V31, P259, DOI 10.1111/j.1525-1594.2007.00373.x
  91. Rochitte CE, 2005, J AM COLL CARDIOL, V46, P1553, DOI 10.1016/j.jacc.2005.06.067
  92. Sabino EC, 2013, CIRCULATION, V127, P1105, DOI 10.1161/CIRCULATIONAHA.112.123612
  93. Simoes MV, 2000, AM J CARDIOL, V86, P975, DOI 10.1016/S0002-9149(00)01133-4
  94. Strasen J, 2014, CLIN RES CARDIOL, V103, P1, DOI 10.1007/s00392-013-0613-y
  95. Tarleton RL, 2001, INT J PARASITOL, V31, P550, DOI 10.1016/S0020-7519(01)00158-8
  96. Theodoropoulos TAD, 2008, INT J CARDIOL, V128, P22, DOI 10.1016/j.ijcard.2007.11.057
  97. Torreao JA, 2015, J CARDIOVASC MAGN R, V17, DOI 10.1186/s12968-015-0200-7
  98. TORRES FW, 1995, AM HEART J, V129, P995, DOI 10.1016/0002-8703(95)90122-1
  99. Uellendahl M, 2016, ARQ BRAS CARDIOL, V107, P460, DOI 10.5935/abc.20160168
  100. Vianna L G, 1979, Arq Bras Cardiol, V33, P41
  101. Viotti R, 2005, REV ESP CARDIOL, V58, P1037, DOI 10.1016/S1885-5857(06)60436-2
  102. Viotti RJ, 2004, HEART, V90, P655, DOI 10.1136/hrt.2003.018960
  103. World Health Organization, 2015, WKLY EPIDEMIOL REC, V90, P33, DOI 10.2147/IBPC.S70402