BCL11B mutations in patients affected by a neurodevelopmental disorder with reduced type 2 innate lymphoid cells

Carregando...
Imagem de Miniatura
Citações na Scopus
71
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
OXFORD UNIV PRESS
Autores
LESSEL, Davor
GEHBAUER, Christina
BRAMSWIG, Nuria C.
SCHLUTH-BOLARD, Caroline
VENKATARAMANAPPA, Sathish
GASSEN, Koen L. I. van
HEMPEL, Maja
HAACK, Tobias B.
BARESIC, Anja
GENETTI, Casie A.
Citação
BRAIN, v.141, p.2299-2311, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The transcription factor BCL11B is essential for development of the nervous and the immune system, and Bcl11b deficiency results in structural brain defects, reduced learning capacity, and impaired immune cell development in mice. However, the precise role of BCL11B in humans is largely unexplored, except for a single patient with a BCL11B missense mutation, affected by multisystem anomalies and profound immune deficiency. Using massively parallel sequencing we identified 13 patients bearing heterozygous germline alterations in BCL11B. Notably, all of them are affected by global developmental delay with speech impairment and intellectual disability; however, none displayed overt clinical signs of immune deficiency. Six frameshift mutations, two nonsense mutations, one missense mutation, and two chromosomal rearrangements resulting in diminished BCL11B expression, arose de novo. A further frameshift mutation was transmitted from a similarly affected mother. Interestingly, the most severely affected patient harbours a missense mutation within a zinc-finger domain of BCL11B, probably affecting the DNA-binding structural interface, similar to the recently published patient. Furthermore, the most C-terminally located premature termination codon mutation fails to rescue the progenitor cell proliferation defect in hippocampal slice cultures from Bcl11b-deficient mice. Concerning the role of BCL11B in the immune system, extensive immune phenotyping of our patients revealed alterations in the T cell compartment and lack of peripheral type 2 innate lymphoid cells (ILC2s), consistent with the findings described in Bcl11b-deficient mice. Unsupervised analysis of 102 T lymphocyte subpopulations showed that the patients clearly cluster apart from healthy children, further supporting the common aetiology of the disorder. Taken together, we show here that mutations leading either to BCL11B haploinsufficiency or to a truncated BCL11B protein clinically cause a non-syndromic neurodevelopmental delay. In addition, we suggest that missense mutations affecting specific sites within zinc-finger domains might result in distinct and more severe clinical outcomes.
Palavras-chave
BCL11B, developmental delay, intellectual disability, type 2 innate lymphoid cells, neurodevelopment
Referências
  1. Arlotta P, 2005, NEURON, V45, P207, DOI 10.1016/j.neuron.2004.12.036
  2. Arlotta P, 2008, J NEUROSCI, V28, P622, DOI 10.1523/JNEUROSCI.2986-07.2008
  3. Basak A, 2015, J CLIN INVEST, V125, P2363, DOI 10.1172/JCI81163
  4. Califano D, 2015, IMMUNITY, V43, P354, DOI 10.1016/j.immuni.2015.07.005
  5. Califano D, 2014, J CLIN INVEST, V124, P174, DOI 10.1172/JCI70103
  6. Cardoso V, 2017, NATURE, V549, P277, DOI 10.1038/nature23469
  7. Chen K, 2009, NAT METHODS, V6, P677, DOI [10.1038/NMETH.1363, 10.1038/nmeth.1363]
  8. Dazzo E, 2015, AM J HUM GENET, V96, P992, DOI 10.1016/j.ajhg.2015.04.020
  9. de Bruin C, 2016, HORM RES PAEDIAT, V86, P342, DOI 10.1159/000446476
  10. Dias C, 2016, AM J HUM GENET, V99, P253, DOI 10.1016/j.ajhg.2016.05.030
  11. Gauthier J, 2018, ANN NEUROL, V83, P1089, DOI 10.1002/ana.25204
  12. Golonzhka O, 2009, J INVEST DERMATOL, V129, P1459, DOI 10.1038/jid.2008.392
  13. Golonzhka O, 2009, P NATL ACAD SCI USA, V106, P4278, DOI 10.1073/pnas.0900568106
  14. Hamby Stephen E., 2011, Human Genomics, V5, P241
  15. Harmston N, 2017, NAT COMMUN, V8, DOI 10.1038/s41467-017-00524-5
  16. Hempel M, 2015, AM J HUM GENET, V97, P493, DOI 10.1016/j.ajhg.2015.08.003
  17. Ippolito GC, 2014, P NATL ACAD SCI USA, V111, pE998, DOI 10.1073/pnas.1319228111
  18. Klose CSN, 2017, NATURE, V549, P282, DOI 10.1038/nature23676
  19. Kominami R, 2012, P JPN ACAD B-PHYS, V88, P72, DOI 10.2183/pjab.88.72
  20. Kubo M, 2017, IMMUNOL REV, V278, P162, DOI 10.1111/imr.12557
  21. Lek M, 2016, NATURE, V536, P285, DOI 10.1038/nature19057
  22. Lennon MJ, 2017, FRONT CELL NEUROSCI, V11, DOI 10.3389/fncel.2017.00089
  23. Lessel D, 2017, AM J HUM GENET, V101, P716, DOI 10.1016/j.ajhg.2017.09.014
  24. Li H, 2009, BIOINFORMATICS, V25, P1754, DOI 10.1093/bioinformatics/btp324
  25. Li L, 2013, BLOOD, V122, P902, DOI 10.1182/blood-2012-08-447839
  26. Li P, 2010, SCIENCE, V329, P85, DOI 10.1126/science.1188063
  27. Liu PT, 2003, NAT IMMUNOL, V4, P525, DOI 10.1038/ni925
  28. Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
  29. Louie RJ, 2017, AM J MED GENET A, V173, P1219, DOI 10.1002/ajmg.a.38144
  30. Monticelli LA, 2011, NAT IMMUNOL, V12, P1045, DOI [10.1038/ni.2131, 10.1031/ni.2131]
  31. Najafabadi HS, 2015, NAT BIOTECHNOL, V33, P555, DOI 10.1038/nbt.3128
  32. Petrovski S, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1003709
  33. Punwani D, 2016, NEW ENGL J MED, V375, P2165, DOI 10.1056/NEJMoa1509164
  34. Samocha KE, 2014, NAT GENET, V46, P944, DOI 10.1038/ng.3050
  35. Simon R, 2016, GENES BRAIN BEHAV, V15, P405, DOI 10.1111/gbb.12287
  36. Simon R, 2012, EMBO J, V31, P2922, DOI 10.1038/emboj.2012.142
  37. Sobreira Nara, 2015, Hum Mutat, V36, P928, DOI 10.1002/humu.22844
  38. Tanaka AJ, 2015, AM J HUM GENET, V97, P457, DOI 10.1016/j.ajhg.2015.07.014
  39. Thorvaldsdottir H, 2013, BRIEF BIOINFORM, V14, P178, DOI 10.1093/bib/bbs017
  40. van Rijt L, 2016, SEMIN IMMUNOPATHOL, V38, P483, DOI 10.1007/s00281-016-0556-2
  41. Venkataramanappa S, 2015, JOVE-J VIS EXP, DOI [10.3791/52550, DOI 10.3791/52550.]
  42. Wakabayashi Y, 2003, NAT IMMUNOL, V4, P533, DOI 10.1038/ni927
  43. Walker JA, 2015, J EXP MED, V212, P875, DOI 10.1084/jem.20142224
  44. Wallrapp A, 2017, NATURE, V549, P351, DOI 10.1038/nature24029
  45. Wang ZX, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0051262
  46. Wolfe SA, 2000, ANNU REV BIOPH BIOM, V29, P183, DOI 10.1146/annurev.biophys.29.1.183
  47. Yu Y, 2016, NATURE, V539, P102, DOI 10.1038/nature20105
  48. Yu Y, 2015, J EXP MED, V212, P865, DOI 10.1084/jem.20142318