Are antimicrobial stewardship programs effective strategies for preventing antibiotic resistance? A systematic review

Carregando...
Imagem de Miniatura
Citações na Scopus
40
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
MOSBY-ELSEVIER
Citação
AMERICAN JOURNAL OF INFECTION CONTROL, v.46, n.7, p.824-836, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Antimicrobial stewardship programs (ASPs) have been proposed as a solution for the global burden of antibiotic resistance, despite the lack of evidence on the subject. Objective: To analyze the role of ASPs in reducing bacterial resistance to antibiotics in hospital settings. Data sources: A review in PubMed, Scopus, LILACS, and SciELO databases was performed. The period analyzed was January 1, 2012-January 4, 2017. Eligibility criteria: Studies that related ASPs to bacterial resistance. Data extraction: All studies that did not focus on ASPs were removed. Antifungal and antiviral programs were excluded. Results: Only 8 studies had quasi-experimental designs, and none were controlled trials. ASP strategies and microorganism-antibiotic pairs evaluated varied widely. Seven studies were classified as presenting clearly positive results, 3 had limited positive results, 7 had doubtful results, 4 had negative results, and 5 had noninterpretable results. The implementation of new infection control practices occurred in 7 studies. Limitations: There are yet few studies on this matter, and most of them have inadequate study designs. Great heterogeneity between study features was detrimental to drawing evidence-based conclusions. Conclusions: There is no solid evidence that ASPs are effective in reducing antibiotic resistance in hospital settings. We uphold the need for more studies with appropriate study designs, standardized ASP interventions targeting common microorganism-antibiotic pairs, and avoiding simultaneous implementation of infection control practices.
Palavras-chave
Antimicrobial stewardship, infection control, antibiotic resistance, bacterial, review, systematic
Referências
  1. Agwu AL, 2008, CLIN INFECT DIS, V47, P747, DOI 10.1086/591133
  2. Alawi MM, 2016, SAUDI MED J, V37, P1350, DOI 10.15537/smj.2016.12.15739
  3. Barbosa TM, 2000, DRUG RESIST UPDATE, V3, P303, DOI 10.1054/drup.2000.0167
  4. Bartlett JG, 2013, CLIN INFECT DIS, V56, P1445, DOI 10.1093/cid/cit070
  5. Bedini A, 2016, DIGEST LIVER DIS, V48, P1142, DOI 10.1016/j.dld.2016.06.023
  6. Burke JP, 1998, JAMA-J AM MED ASSOC, V280, P1270, DOI 10.1001/jama.280.14.1270
  7. Carlet J, 2011, LANCET, V378, P369, DOI 10.1016/S0140-6736(11)60401-7
  8. Cassier P, 2011, CLIN MICROBIOL INFEC, V17, P1746, DOI 10.1111/j.1469-0691.2010.03349.x
  9. Centers for Disease Control and Prevention, 2013, OFF INF DIS ANT RES
  10. Chan YY, 2011, INT J ANTIMICROB AG, V38, P486, DOI 10.1016/j.ijantimicag.2011.08.011
  11. Chen CH, 2015, MED MALADIES INFECT, V45, P264, DOI 10.1016/j.medmal.2015.04.005
  12. Cook PP, 2015, INT J ANTIMICROB AG, V45, P262, DOI 10.1016/j.ijantimicag.2014.11.006
  13. Costelloe C, 2010, BMJ-BRIT MED J, V340, DOI 10.1136/bmj.c2096
  14. Dancer SJ, 2013, INT J ANTIMICROB AG, V41, P137, DOI 10.1016/j.ijantimicag.2012.10.013
  15. Davey P, 2013, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD003543.pub3
  16. de Kraker MEA, 2017, CLIN MICROBIOL INFEC, V23, P819, DOI 10.1016/j.cmi.2017.05.019
  17. del Arco A, 2015, EUR J CLIN MICROBIOL, V34, P247, DOI 10.1007/s10096-014-2225-5
  18. Dellit TH, 2007, CLIN INFECT DIS, V44, P159, DOI 10.1086/510393
  19. DiazGranados CA, 2012, AM J INFECT CONTROL, V40, P526, DOI 10.1016/j.ajic.2011.07.011
  20. Doernberg SB, 2015, ANTIMICROB RESIST IN, V4, DOI 10.1186/s13756-015-0095-y
  21. Effective Practice and Organization of Care, 2015, EPOC RES REV AUTH
  22. Goossens H, 2005, LANCET, V365, P579, DOI 10.1016/S0140-6736(05)17907-0
  23. Guo W, 2015, AM J INFECT CONTROL, V43, P358, DOI 10.1016/j.ajic.2014.12.010
  24. Hou DP, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0101447
  25. Jenkins TC, 2015, INFECT CONT HOSP EP, V36, P664, DOI 10.1017/ice.2015.41
  26. Kim YC, 2013, AM J INFECT CONTROL, V41, pE39, DOI 10.1016/j.ajic.2012.12.018
  27. Knudsen JG, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0084910
  28. Lai CC, 2016, J MICROBIOL IMMUNOL, V49, P74, DOI 10.1016/j.jmii.2015.05.011
  29. Lawes T, 2015, LANCET INFECT DIS, V15, P1438, DOI 10.1016/S1473-3099(15)00315-1
  30. Lew KY, 2015, J ANTIMICROB CHEMOTH, V70, P1219, DOI 10.1093/jac/dku479
  31. Liew YX, 2012, INT J ANTIMICROB AG, V40, P55, DOI 10.1016/j.ijantimicag.2012.03.004
  32. Liu B, 2009, NUCLEIC ACIDS RES, V37, pD443, DOI 10.1093/nar/gkn656
  33. MacDougall C, 2005, CLIN MICROBIOL REV, V18, P638, DOI 10.1128/CMR.18.4.638-656.2005
  34. Malani AN, 2013, AM J INFECT CONTROL, V41, P145, DOI 10.1016/j.ajic.2012.02.021
  35. Morrill HJ, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0150795
  36. Munita JM, 2016, MICROBIOL SPECTR, V4, DOI 10.1128/microbiolspec.VMBF-0016-2015
  37. Nijssen S, 2006, CLIN INFECT DIS, V43, P616, DOI 10.1086/506438
  38. Niwa T, 2012, INT J CLIN PRACT, V66, P999, DOI 10.1111/j.1742-1241.2012.02999.x
  39. Nowak MA, 2012, AM J HEALTH-SYST PH, V69, P1500, DOI 10.2146/ajhp110603
  40. O'Brien KA, 2015, PHARMACOTHERAPY, V35, P464, DOI 10.1002/phar.1590
  41. Okumura LM, 2015, BRAZ J INFECT DIS, V19, P246, DOI 10.1016/j.bjid.2015.02.005
  42. Sarma JB, 2015, J HOSP INFECT, V91, P68, DOI 10.1016/j.jhin.2015.05.006
  43. Schechner V, 2013, CLIN MICROBIOL REV, V26, P289, DOI 10.1128/CMR.00001-13
  44. Taggart LR, 2015, BMC INFECT DIS, V15, DOI 10.1186/s12879-015-1223-2
  45. Viale P, 2015, CLIN MICROBIOL INFEC, V21, P242, DOI 10.1016/j.cmi.2014.10.020
  46. Wong D, 2017, VIRULENCE, V8, P383, DOI 10.1080/21505594.2016.1188234
  47. World Health Organization, 2014, ANT RES GLOB REP SUR
  48. Yoon Y., 2014, MICRONANOSYST LETT, V2, P1, DOI 10.1186/S40486-014-0003-X)
  49. Zou YM, 2015, EUR J CLIN MICROBIOL, V34, P795, DOI 10.1007/s10096-014-2293-6