Human Synovial Mesenchymal Stem Cells Good Manufacturing Practices for Articular Cartilage Regeneration

Carregando...
Imagem de Miniatura
Citações na Scopus
33
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
MARY ANN LIEBERT, INC
Autores
KIMURA, Heitor Akio
PINHEIRO, Carla Cristina Gomes
SHIMOMURA, Kazunori
NAKAMURA, Norimasa
FERREIRA, Jose Ricardo
GOMOLL, Andreas H.
BUENO, Daniela Franco
Citação
TISSUE ENGINEERING PART C-METHODS, v.24, n.12, p.709-716, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Cartilage restoration is a desperately needed bridge for patients with symptomatic cartilage lesions. Chondral lesion is a pathology with high prevalence, reaching as much as 63% of general population and 36% among athletes. Despite autologous chondrocyte implantation versatility, it still fails to fully reproduce hyaline articular cartilage characteristics. Mesenchymal stem cells (MSCs) may be isolated from various known tissues, including discarded fragments at arthroscopy such as synovial membrane. Choice of harvesting site is motivated by MSCs' abilities to modulate immunologic and inflammatory response through paracrine communication. Synovial MSCs have a greater proliferation and strong chondrogenic potential than bone and adipose MSCs and a less hypertrophic differentiation than bone MSCs. Good manufacturing practice (GMP) laboratory techniques for human clinical trials are still novel. To our knowledge, there are only two clinical trials in humans published since today. Purpose: Therefore, this work aimed to isolate and characterize synovial MSCs and evaluated their differentiation properties according to GMP standards. Materials and Methods: One-gram tissue sample from three patients of synovia was harvested at the beginning of arthroscopy surgery. MSCs were isolated, expanded, and characterized by flow cytometry. Results: It was possible to isolate and expand MSCs cultures from synovia, characterize MSCs by flow cytometry using proper monoclonal antibodies, and differentiate MSCs by coloring technique after chondrogenic, adipogenic, and osteogenic differentiations. Cartilage treatment may benefit from these tissue engineering protocols since arthroscopic procedures are routinely performed for different purposes in a previous stage and a favorable chondronegic differentiation cell lineage may be collected and stored in a less invasive way. Conclusion: Laboratory protocols established according to presented GMP were able to isolate and characterize MSCs obtained from synovia.
Palavras-chave
synovia, tissue engineering, mesenchymal stem cells, hyaline articular cartilage, chondrogenic differentiation, immune modulation
Referências
  1. ARUFFO A, 1990, CELL, V61, P1303, DOI 10.1016/0092-8674(90)90694-A
  2. Baboolal TG, 2016, ANN RHEUM DIS, V75, P908, DOI 10.1136/annrheumdis-2014-206847
  3. Bueno DF, 2009, TISSUE ENG PT A, V15, P427, DOI 10.1089/ten.tea.2007.0417
  4. Codinach M, 2016, CYTOTHERAPY, V18, P1197, DOI 10.1016/j.jcyt.2016.05.012
  5. Dominici M, 2006, CYTOTHERAPY, V8, P315, DOI 10.1080/14653240600855905
  6. English A, 2007, RHEUMATOLOGY, V46, P1676, DOI 10.1093/rheumatology/kem217
  7. Farr Jack, 2016, J Clin Orthop Trauma, V7, P183, DOI 10.1016/j.jcot.2016.05.001
  8. Fernandes TL, 2018, STEM CELL REV REP, V14, P734, DOI 10.1007/s12015-018-9820-2
  9. Flanigan DC, 2010, MED SCI SPORT EXER, V42, P1795, DOI 10.1249/MSS.0b013e3181d9eea0
  10. Garcia J, 2016, SCI REP-UK, V6, DOI 10.1038/srep24295
  11. Halfon S, 2011, STEM CELLS DEV, V20, P53, DOI 10.1089/scd.2010.0040
  12. Hee CK, 2006, BIOMATERIALS, V27, P875, DOI 10.1016/j.biomaterials.2005.07.004
  13. Hickery MS, 2003, J BIOL CHEM, V278, P53063, DOI 10.1074/jbc.M209632200
  14. Hunziker EB, 2002, OSTEOARTHR CARTILAGE, V10, P432, DOI 10.1053/joca.2002.0801
  15. ISSCR, 2016, GUID STEM CELL RES D
  16. Jazedje T, 2009, J TRANSL MED, V7, DOI 10.1186/1479-5876-7-46
  17. Junker JPE, 2010, CELLS TISSUES ORGANS, V191, P105, DOI 10.1159/000232157
  18. Kikuchi T, 1996, OSTEOARTHR CARTILAGE, V4, P99, DOI 10.1016/S1063-4584(05)80319-X
  19. Koh YG, 2012, KNEE, V19, P902, DOI 10.1016/j.knee.2012.04.001
  20. Kubosch EJ, 2018, CURR STEM CELL RES T, V13, P174, DOI 10.2174/1574888X12666171002111026
  21. Lorenz K, 2008, EXP DERMATOL, V17, P925, DOI 10.1111/j.1600-0625.2008.00724.x
  22. Maxson S, 2012, STEM CELL TRANSL MED, V1, P142, DOI 10.5966/sctm.2011-0018
  23. Mochizuki T, 2006, ARTHRITIS RHEUM, V54, P843, DOI 10.1002/art.21651
  24. Niemeyer P, 2014, INT ORTHOP, V38, P2065, DOI 10.1007/s00264-014-2368-0
  25. Ochi M, 2004, ARTIF ORGANS, V28, P28, DOI 10.1111/j.1525-1594.2004.07317.x
  26. Park YB, 2017, STEM CELL TRANSL MED, V6, P613, DOI 10.5966/sctm.2016-0157
  27. Pei M, 2008, DIFFERENTIATION, V76, P1044, DOI 10.1111/j.1432-0436.2008.00299.x
  28. Perera JR, 2012, ANN ROY COLL SURG, V94, P381, DOI 10.1308/003588412X13171221592573
  29. Sakaguchi Y, 2005, ARTHRITIS RHEUM, V52, P2521, DOI 10.1002/art.21212
  30. Samuelson EM, 2012, AM J SPORT MED, V40, P1252, DOI 10.1177/0363546512441586
  31. Sekiya I, 2015, CLIN ORTHOP RELAT R, V473, P2316, DOI 10.1007/s11999-015-4324-8
  32. Sensebe L, 2013, STEM CELL RES THER, V4, DOI 10.1186/scrt217
  33. Shimomura K, 2018, AM J SPORT MED, V46, P2384, DOI 10.1177/0363546518781825
  34. Shimomura K, 2015, CARTILAGE, V6, p13S, DOI 10.1177/1947603515571002
  35. Shimomura K, 2010, BIOMATERIALS, V31, P8004, DOI 10.1016/j.biomaterials.2010.07.017
  36. TEGNER Y, 1985, CLIN ORTHOP RELAT R, P43
  37. TOOLE BP, 1979, P NATL ACAD SCI USA, V76, P6299, DOI 10.1073/pnas.76.12.6299
  38. Zainal Ariffin S.H., 2012, SCI WORLD J, V2012