Resting state functional connectivity and neural correlates of face-name encoding in patients with ischemic vascular lesions with and without the involvement of the left inferior frontal gyrus

Carregando...
Imagem de Miniatura
Citações na Scopus
8
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER MASSON, CORPORATION OFFICE
Citação
CORTEX, v.113, p.15-28, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Face-name association is a relevant ability for social interactions and involves the ventral and dorsolateral prefrontal cortices, particularly in the left hemisphere, bilateral hippocampal, fusiform gyrus and occipital regions. Previous studies demonstrated the primary role of the hippocampus for this ability in healthy subjects. However, no study has examined the participation of the left inferior frontal area, specially the left inferior frontal gyrus (LIFG) in patients with ischemic vascular lesions. In the present study we addressed this issue and investigated the neural correlates and resting state functional connectivity of face-name memory encoding in ischemic patients with LIFG or without lesions in the left IFG (nLIFG) and healthy controls (HC) using fMRI. The main results showed that the nLIFG group demonstrated efficient compensation related to encoding and performance on face-name learning and recognition memory task, in addition to similar brain areas activated during task performance compared to healthy controls. Some of these areas were more activated in nLIFG group, indicating a compensation mechanism. In contrast, the LIFG group showed worse behavior performance, and no signs of an efficient compensation mechanism. Functional connectivity analysis suggested that the left IFG region seems to be important for maintaining the connectivity of the right fusiform gyrus or, perhaps, lesion in this area is associated to maladaptive reorganization. Our findings highlight the relevant role of the left IFG in face-name learning and encoding, possibly as a primary region in addition to the bilateral hippocampal formation and fusiform gyrus.
Palavras-chave
Left inferior frontal gyrus, Memory encoding, Face-name association, Ischemic vascular lesion, fMRI functional connectivity
Referências
  1. Adhikari MH, 2017, BRAIN, V140, P1068, DOI 10.1093/brain/awx021
  2. Alstott J, 2009, PLOS COMPUT BIOL, V5, DOI 10.1371/journal.pcbi.1000408
  3. Badre D, 2007, NEUROPSYCHOLOGIA, V45, P2883, DOI 10.1016/j.neuropsychologia.2007.06.015
  4. Benedict R. H. B, 1997, BRIEF VISUAL SPATIAL
  5. Birn RM, 2010, NEUROIMAGE, V49, P1099, DOI 10.1016/j.neuroimage.2009.07.036
  6. Blumenfeld RS, 2006, J NEUROSCI, V26, P916, DOI 10.1523/JNEUROSCI.2353-05.2006
  7. Brandt J, 2001, HOPKINS VERBAL LEARN
  8. Brett M, 2001, NEUROIMAGE, V14, P486, DOI 10.1006/nimg.2001.0845
  9. Dacosta-Aguayo R, 2014, HUM BRAIN MAPP, V35, P3819, DOI 10.1002/hbm.22439
  10. Dosenbach NUF, 2007, P NATL ACAD SCI USA, V104, P11073, DOI 10.1073/pnas.0704320104
  11. Elger CE, 2004, LANCET NEUROL, V3, P663, DOI 10.1016/S1474-4422(04)00906-8
  12. FOLSTEIN MF, 1975, J PSYCHIAT RES, V12, P189, DOI 10.1016/0022-3956(75)90026-6
  13. Franzmeier N, 2018, ALZHEIMERS RES THER, V10, DOI 10.1186/s13195-018-0358-y
  14. Franzmeier N, 2017, J ALZHEIMERS DIS, V59, P1381, DOI 10.3233/JAD-170360
  15. Gainotti G, 2015, NEUROPSYCHOLOGIA, V77, P279, DOI 10.1016/j.neuropsychologia.2015.09.002
  16. GERSHBERG FB, 1995, NEUROPSYCHOLOGIA, V33, P1305, DOI 10.1016/0028-3932(95)00103-A
  17. Hagen K, 2014, NEUROIMAGE, V85, P583, DOI 10.1016/j.neuroimage.2013.09.014
  18. Hamilton AC, 2005, COGN AFFECT BEHAV NE, V5, P1
  19. Hampstead BM, 2011, NEUROREHAB NEURAL RE, V25, P210, DOI 10.1177/1545968310382424
  20. JETTER W, 1986, CORTEX, V22, P229, DOI 10.1016/S0010-9452(86)80047-8
  21. Kelley WM, 1998, NEURON, V20, P927, DOI 10.1016/S0896-6273(00)80474-2
  22. Kim H, 2015, HIPPOCAMPUS, V25, P500, DOI 10.1002/hipo.22387
  23. Kim H, 2011, NEUROIMAGE, V54, P2446, DOI 10.1016/j.neuroimage.2010.09.045
  24. Kirwan CB, 2004, HIPPOCAMPUS, V14, P919, DOI 10.1002/hipo.20014
  25. Klamer S, 2017, NEUROIMAGE-CLIN, V14, P174, DOI 10.1016/j.nicl.2017.01.021
  26. Lim JS, 2015, J STROKE, V17, P256, DOI 10.5853/jos.2015.17.3.256
  27. Mansouri FA, 2009, NAT REV NEUROSCI, V10, P141, DOI 10.1038/nrn2538
  28. Miotto EC, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0105987
  29. Miotto EC, 2013, CLIN NEUROL NEUROSUR, V115, P309, DOI 10.1016/j.clineuro.2012.05.024
  30. Moodley KK, 2014, FRONT NEUROL NEUROSC, V34, P95, DOI 10.1159/000356430
  31. Moscovitch M, 2016, ANNU REV PSYCHOL, V67, P105, DOI 10.1146/annurev-psych-113011-143733
  32. Ovadia-Caro S, 2014, STROKE, V45, P2818, DOI 10.1161/STROKEAHA.114.003689
  33. Regard M, 1981, THESIS
  34. REITAN R. M., 1958, PERCEPT MOT SKILLS, V8, P271
  35. Ringe WK, 2002, ASSESSMENT, V9, P254, DOI 10.1177/1073191102009003004
  36. Robinson-Long Melissa, 2009, Top Magn Reson Imaging, V20, P271, DOI 10.1097/RMR.0b013e3181e8f1f9
  37. SCOVILLE WB, 1957, J NEUROL NEUROSUR PS, V20, P11, DOI 10.1136/jnnp.20.1.11
  38. Shibuya-Tayoshi S, 2007, PSYCHIAT CLIN NEUROS, V61, P616, DOI 10.1111/j.1440-1819.2007.01.727.x
  39. Siegel JS, 2016, P NATL ACAD SCI USA, V113, pE4367, DOI 10.1073/pnas.1521083113
  40. Simo M, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0119159
  41. Small SA, 2001, NAT NEUROSCI, V4, P442, DOI 10.1038/86115
  42. Smith SM, 2004, NEUROIMAGE, V23, pS208, DOI 10.1016/j.neuroimage.2004.07.051
  43. Spaniol J, 2009, NEUROPSYCHOLOGIA, V47, P1765, DOI 10.1016/j.neuropsychologia.2009.02.028
  44. Sperling R, 2003, NEUROIMAGE, V20, P1400, DOI 10.1016/S1053-8119(03)00391-4
  45. Sperling RA, 2003, J NEUROL NEUROSUR PS, V74, P44, DOI 10.1136/jnnp.74.1.44
  46. Sperling RA, 2001, HUM BRAIN MAPP, V14, P129, DOI 10.1002/hbm.1047
  47. Strauss E., 2006, COMPENDIUM NEUROPSYC
  48. Summerfield C, 2006, PLOS BIOL, V4, P855, DOI 10.1371/journal.pbio.0040128
  49. SUNDERLAND T, 1989, J AM GERIATR SOC, V37, P725, DOI 10.1111/j.1532-5415.1989.tb02233.x
  50. Szczepanski SM, 2014, NEURON, V83, P1002, DOI 10.1016/j.neuron.2014.08.011
  51. Thompson-Schill SL, 1998, P NATL ACAD SCI USA, V95, P15855, DOI 10.1073/pnas.95.26.15855
  52. Troyer AK, 1998, NEUROPSYCHOLOGIA, V36, P499, DOI 10.1016/S0028-3932(97)00152-8
  53. Vannini P, 2011, CEREB CORTEX, V21, P22, DOI 10.1093/cercor/bhq051
  54. Vannini P, 2013, HUM BRAIN MAPP, V34, P1568, DOI 10.1002/hbm.22011
  55. Vincent JL, 2006, J NEUROPHYSIOL, V96, P3517, DOI 10.1152/jn.00048.2006
  56. Vincent JL, 2008, J NEUROPHYSIOL, V100, P3328, DOI 10.1152/jn.90355.2008
  57. Warrington E. K., 1984, RECOGNITION MEMORY T
  58. Woolrich MW, 2004, NEUROIMAGE, V21, P1732, DOI 10.1016/j.neuroimage.2003.12.023
  59. Young Brittany Mei, 2014, Front Neuroeng, V7, P25, DOI 10.3389/fneng.2014.00025
  60. Zeineh MM, 2003, SCIENCE, V299, P577, DOI 10.1126/science.1077775
  61. 2008, HUMAN BRAIN MAPPING, V29, P802, DOI 10.1002/HBM.20579
  62. 2010, NEUROPSYCHOPHARMACOL, V35, P86, DOI 10.1038/NPP.2009.126