Please use this identifier to cite or link to this item: https://observatorio.fm.usp.br/handle/OPI/32006
Full metadata record
DC FieldValueLanguage
dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.authorBACCAM, Alexandra
dc.contributor.authorBENONI-SVIERCOVICHO, Alexandra
dc.contributor.authorROCCHI, Marco
dc.contributor.authorMORESI, Viviana
dc.contributor.authorSEELAENDER, Marilia
dc.contributor.authorLI, Zhenlin
dc.contributor.authorADAMO, Sergio
dc.contributor.authorXUE, Zhigang
dc.contributor.authorCOLETTI, Dario
dc.date.accessioned2019-05-30T13:51:27Z
dc.date.available2019-05-30T13:51:27Z
dc.date.issued2019
dc.identifier.citationFRONTIERS IN PHYSIOLOGY, v.10, article ID 401, 9p, 2019
dc.identifier.issn1664-042X
dc.identifier.urihttps://observatorio.fm.usp.br/handle/OPI/32006
dc.description.abstractActivin negatively affects muscle fibers and progenitor cells in aging (sarcopenia) and in chronic diseases characterized by severe muscle wasting (cachexia). High circulating activin levels predict poor survival in cancer patients. However, the relative impact of activin in mediating muscle atrophy and hampered homeostasis is still unknown. To directly assess the involvement of activin, and its physiological inhibitor follistatin, in cancer-induced muscle atrophy, we cultured C2C12 myotubes in the absence or in the presence of a mechanical stretching stimulus and in the absence or presence of C26 tumor-derived factors (CM), so as to mimic the mechanical stimulation of exercise and cancer cachexia, respectively. We found that CM induces activin release by myotubes, further exacerbating the negative effects of tumor-derived factors. In addition, mechanical stimulation is sufficient to counteract the adverse tumor-induced effects on muscle cells, in association with an increased follistatin/activin ratio in the cell culture medium, indicating that myotubes actively release follistatin upon stretching. Recombinant follistatin counteracts tumor effects on myotubes exclusively by rescuing fusion index, suggesting that it is only partially responsible for the stretch-mediated rescue. Therefore, besides activin, other tumor-derived factors may play a significant role in mediating muscle atrophy. In addition to increasing follistatin secretion mechanical stimulation induces additional beneficial responses in myotubes. We propose that in animal models of cancer cachexia and in cancer patients purely mechanical stimuli play an important role in mediating the rescue of the muscle homeostasis reported upon exercise.eng
dc.description.sponsorshipAFM [2017-20603]
dc.description.sponsorshipEFEM 2016
dc.description.sponsorshipIBPS Action Incitative (2014)
dc.description.sponsorshipANR [2013-J13R191]
dc.description.sponsorship2016 Sapienza Research projects [RM116154ECE34AF4, RM11715C78539BD8]
dc.language.isoeng
dc.publisherFRONTIERS MEDIA SAeng
dc.relation.ispartofFrontiers in Physiology
dc.rightsrestrictedAccesseng
dc.subjectskeletal muscle atrophyeng
dc.subjectmyokineseng
dc.subjectmechanotransductioneng
dc.subjectexerciseeng
dc.subjectC26 colon carcinomaeng
dc.subjectFlexCell apparatuseng
dc.subject.othercancer cachexiaeng
dc.subject.otheradipose-tissueeng
dc.subject.otheractivin-aeng
dc.subject.othermuscleeng
dc.subject.otherexerciseeng
dc.subject.othermyostatineng
dc.subject.otherinflammationeng
dc.subject.otherhypertrophyeng
dc.subject.otherblockadeeng
dc.subject.otherreversaleng
dc.titleThe Mechanical Stimulation of Myotubes Counteracts the Effects of Tumor-Derived Factors Through the Modulation of the Activin/Follistatin Ratioeng
dc.typearticleeng
dc.rights.holderCopyright FRONTIERS MEDIA SAeng
dc.identifier.doi10.3389/fphys.2019.00401
dc.identifier.pmid31068826
dc.subject.wosPhysiologyeng
dc.type.categoryoriginal articleeng
dc.type.versionpublishedVersioneng
hcfmusp.author.externalBACCAM, Alexandra:Sorbonne Univ, Biol Adaptat & Aging B2A, UMR8256 INSERM ERL U1164, Paris, France; Sapienza Univ Rome, Dept Anat Histol Forens & Orthoped Sci, Sect Histol, Rome, Italy; Interuniv Inst Myol, Rome, Italy
hcfmusp.author.externalBENONI-SVIERCOVICHO, Alexandra:Sorbonne Univ, Biol Adaptat & Aging B2A, UMR8256 INSERM ERL U1164, Paris, France; Sapienza Univ Rome, Dept Anat Histol Forens & Orthoped Sci, Sect Histol, Rome, Italy; Interuniv Inst Myol, Rome, Italy
hcfmusp.author.externalROCCHI, Marco:Univ Urbino, Dept Biomol Sci, Urbino, Italy
hcfmusp.author.externalMORESI, Viviana:Sapienza Univ Rome, Dept Anat Histol Forens & Orthoped Sci, Sect Histol, Rome, Italy; Interuniv Inst Myol, Rome, Italy
hcfmusp.author.externalLI, Zhenlin:Sapienza Univ Rome, Dept Anat Histol Forens & Orthoped Sci, Sect Histol, Rome, Italy
hcfmusp.author.externalADAMO, Sergio:Sorbonne Univ, Biol Adaptat & Aging B2A, UMR8256 INSERM ERL U1164, Paris, France; Interuniv Inst Myol, Rome, Italy
hcfmusp.author.externalXUE, Zhigang:Sapienza Univ Rome, Dept Anat Histol Forens & Orthoped Sci, Sect Histol, Rome, Italy
hcfmusp.author.externalCOLETTI, Dario:Sorbonne Univ, Biol Adaptat & Aging B2A, UMR8256 INSERM ERL U1164, Paris, France; Sapienza Univ Rome, Dept Anat Histol Forens & Orthoped Sci, Sect Histol, Rome, Italy; Interuniv Inst Myol, Rome, Italy
hcfmusp.description.articlenumber401
hcfmusp.description.volume10
hcfmusp.origemWOS
hcfmusp.origem.idWOS:000465664400001
hcfmusp.origem.id2-s2.0-85068208430
hcfmusp.publisher.cityLAUSANNEeng
hcfmusp.publisher.countrySWITZERLANDeng
hcfmusp.relation.referenceAulino P, 2015, INT J MED SCI, V12, P336, DOI 10.7150/ijms.10761eng
hcfmusp.relation.referenceBarone R, 2016, SCI REP-UK, V6, DOI 10.1038/srep19781eng
hcfmusp.relation.referenceBarreto R, 2016, FRONT PHYSIOL, V7, DOI 10.3389/fphys.2016.00472eng
hcfmusp.relation.referenceCarotenuto F, 2016, EUR J TRANSL MYOL, V26, P317, DOI 10.4081/ejtm.2016.6033eng
hcfmusp.relation.referenceChen JL, 2016, ADV EXP MED BIOL, V900, P97, DOI 10.1007/978-3-319-27511-6_5eng
hcfmusp.relation.referenceChen JL, 2014, FASEB J, V28, P1711, DOI 10.1096/fj.13-245894eng
hcfmusp.relation.referenceCiaraldi TP, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0158209eng
hcfmusp.relation.referenceColetti D, 2018, EUR J TRANSL MYOL, V28, P153, DOI 10.4081/ejtm.2018.7587eng
hcfmusp.relation.referenceColetti D, 2016, STEM CELLS INT, DOI 10.1155/2016/6729268eng
hcfmusp.relation.referenceCostelli P, 2008, EUR J CLIN INVEST, V38, P531, DOI 10.1111/j.1365-2362.2008.01970.xeng
hcfmusp.relation.referenceDe Arcangelis V, 2005, J CELL PHYSIOL, V202, P787, DOI 10.1002/jcp.20174eng
hcfmusp.relation.referenceDeane CS, 2013, J STEROID BIOCHEM, V138, P152, DOI 10.1016/j.jsbmb.2013.05.005eng
hcfmusp.relation.referenceDing H, 2017, J CACHEXIA SARCOPENI, V8, P202, DOI 10.1002/jcsm.12145eng
hcfmusp.relation.referenceDonatto FF, 2013, CYTOKINE, V61, P426, DOI 10.1016/j.cyto.2012.10.021eng
hcfmusp.relation.referenceFearon KCH, 2012, CELL METAB, V16, P153, DOI 10.1016/j.cmet.2012.06.011eng
hcfmusp.relation.referenceFormicola L, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.00515eng
hcfmusp.relation.referenceHatakeyama S, 2016, SKELET MUSCLE, V6, DOI 10.1186/s13395-016-0098-2eng
hcfmusp.relation.referenceLira FS, 2012, HORM METAB RES, V44, P91, DOI 10.1055/s-0031-1299694eng
hcfmusp.relation.referenceLira FS, 2009, CELL BIOCHEM FUNCT, V27, P71, DOI 10.1002/cbf.1540eng
hcfmusp.relation.referenceLira FS, 2014, APPL PHYSIOL NUTR ME, V39, P679, DOI 10.1139/apnm-2013-0554eng
hcfmusp.relation.referenceLivak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262eng
hcfmusp.relation.referenceLoumaye A, 2017, J CACHEXIA SARCOPENI, V8, P768, DOI 10.1002/jcsm.12209eng
hcfmusp.relation.referenceLoumaye A, 2015, J CLIN ENDOCR METAB, V100, P2030, DOI 10.1210/jc.2014-4318eng
hcfmusp.relation.referenceMathew SJ, 2011, DIS MODEL MECH, V4, P283, DOI 10.1242/dmm.007658eng
hcfmusp.relation.referenceMorvan F, 2017, P NATL ACAD SCI USA, V114, P12448, DOI 10.1073/pnas.1707925114eng
hcfmusp.relation.referencePedersen BK, 2013, COMPR PHYSIOL, V3, P1337, DOI 10.1002/cphy.c120033eng
hcfmusp.relation.referencePigna E, 2016, SCI REP-UK, V6, DOI 10.1038/srep26991eng
hcfmusp.relation.referenceTilbrook AJ, 1996, J ENDOCRINOL, V149, P55, DOI 10.1677/joe.0.1490055eng
hcfmusp.relation.referenceToledo M, 2016, INT J CANCER, V138, P2021, DOI 10.1002/ijc.29930eng
hcfmusp.relation.referenceTrendelenburg AU, 2009, AM J PHYSIOL-CELL PH, V296, pC1258, DOI 10.1152/ajpcell.00105.2009eng
hcfmusp.relation.referenceWinbanks CE, 2016, SCI TRANSL MED, V8, DOI 10.1126/scitranslmed.aac4976eng
hcfmusp.relation.referenceYeo NH, 2012, J SPORT MED PHYS FIT, V52, P448eng
hcfmusp.relation.referenceZheng H, 2017, EXP MOL MED, V49, DOI 10.1038/emm.2017.135eng
hcfmusp.relation.referenceZhou XL, 2010, CELL, V142, P531, DOI 10.1016/j.cell.2010.07.011eng
dc.description.indexPubMedeng
hcfmusp.citation.scopus21-
hcfmusp.scopus.lastupdate2024-03-29-
Appears in Collections:

Artigos e Materiais de Revistas Científicas - LIM/26
LIM/26 - Laboratório de Pesquisa em Cirurgia Experimental

Artigos e Materiais de Revistas Científicas - ODS/03
ODS/03 - Saúde e bem-estar


Files in This Item:
File Description SizeFormat 
art_BACCAM_The_Mechanical_Stimulation_of_Myotubes_Counteracts_the_Effects_2019.PDF
  Restricted Access
publishedVersion (English)3.88 MBAdobe PDFView/Open Request a copy

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.