Cardioprotection Conferred by Sitagliptin Is Associated with Reduced Cardiac Angiotensin II/Angiotensin-(1-7) Balance in Experimental Chronic Kidney Disease

Carregando...
Imagem de Miniatura
Citações na Scopus
21
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Citação
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, v.20, n.8, article ID 1940, 18p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Dipeptidyl peptidase IV (DPPIV) inhibitors are antidiabetic agents that exert renoprotective actions independently of glucose lowering. Cardiac dysfunction is one of the main outcomes of chronic kidney disease (CKD); however, the effects of DPPIV inhibition on cardiac impairment during CKD progression remain elusive. This study investigated whether DPPIV inhibition mitigates cardiac dysfunction and remodeling in rats with a 5/6 renal ablation and evaluated if these effects are associated with changes in the cardiac renin-angiotensin system (RAS). To this end, male Wistar rats underwent a 5/6 nephrectomy (Nx) or sham operation, followed by an 8-week treatment period with the DPPIV inhibitor sitagliptin (IDPPIV) or vehicle. Nx rats had lower glomerular filtration rate, overt albuminuria and higher blood pressure compared to sham rats, whereas CKD progression was attenuated in Nx + IDPPIV rats. Additionally, Nx rats exhibited cardiac hypertrophy and fibrosis, which were associated with higher cardiac DPPIV activity and expression. The sitagliptin treatment prevented cardiac fibrosis and mitigated cardiac hypertrophy. The isovolumic relaxation time (IRVT) was higher in Nx than in sham rats, which was suggestive of CKD-associated-diastolic dysfunction. Sitagliptin significantly attenuated the increase in IRVT. Levels of angiotensin II (Ang II) in the heart tissue from Nx rats were higher while those of angiotensin-(1-7) Ang-(1-7) were lower than that in sham rats. This cardiac hormonal imbalance was completely prevented by sitagliptin. Collectively, these results suggest that DPPIV inhibition may delay the onset of cardiovascular impairment in CKD. Furthermore, these findings strengthen the hypothesis that a crosstalk between DPPIV and the renin-angiotensin system plays a role in the pathophysiology of cardiorenal syndromes.
Palavras-chave
dipeptidyl peptidase IV, 5, 6 renal ablation, renin-angiotensin system, cardiorenal syndromes
Referências
  1. Ariyoshi M, 2002, ACTA MED OKAYAMA, V56, P187
  2. Aroor A, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17050780
  3. Arruda DF, 2016, FRONT PHYSIOL, V7, DOI 10.3389/fphys.2016.00293
  4. Balteau M, 2014, AM J PHYSIOL-HEART C, V307, pH1120, DOI 10.1152/ajpheart.00210.2014
  5. Chaykovska L, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0027861
  6. Choi SH, 2015, VASC PHARMACOL, V73, P11, DOI 10.1016/j.vph.2015.07.005
  7. Choi SY, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0180393
  8. Connelly KA, 2014, CLIN INVEST MED, V37, pE172
  9. dos Santos L, 2013, CIRC-HEART FAIL, V6, P1029, DOI 10.1161/CIRCHEARTFAILURE.112.000057
  10. Farah LXS, 2016, AM J PHYSIOL-RENAL, V310, pF123, DOI 10.1152/ajprenal.00394.2015
  11. Ferrario Carlos M, 2016, Ther Adv Cardiovasc Dis, V10, P162, DOI 10.1177/1753944716642677
  12. Filippatos G, 2014, EUR HEART J, V35, P416, DOI 10.1093/eurheartj/eht515
  13. Girardi ACC, 2004, AM J PHYSIOL-CELL PH, V287, pC1238, DOI 10.1152/ajpcell.00186.2004
  14. Gomez N, 2012, EUR J HEART FAIL, V14, P14, DOI 10.1093/eurjhf/hfr146
  15. Holst JJ, 2005, DIABETOLOGIA, V48, P612, DOI 10.1007/s00125-005-1705-7
  16. Hori M, 2009, CARDIOVASC RES, V81, P457, DOI 10.1093/cvr/cvn335
  17. Inoue BH, 2013, AM J PHYSIOL-RENAL, V305, pF216, DOI 10.1152/ajprenal.00255.2012
  18. Joo KW, 2013, BMC NEPHROL, V14, DOI 10.1186/1471-2369-14-98
  19. Kanasaki K, 2014, DIABETES, V63, P2120, DOI 10.2337/db13-1029
  20. Karmazyn M, 2008, J MOL CELL CARDIOL, V44, P647, DOI 10.1016/j.yjmcc.2008.01.005
  21. Kawase H, 2016, J MOL CELL CARDIOL, V98, P37, DOI 10.1016/j.yjmcc.2016.06.066
  22. Koibuchi N, 2014, CARDIOVASC DIABETOL, V13, DOI 10.1186/s12933-014-0157-0
  23. Lee JE, 2016, LAB INVEST, V96, P547, DOI 10.1038/labinvest.2016.34
  24. Lim SW, 2015, LAB INVEST, V95, P1174, DOI 10.1038/labinvest.2015.93
  25. Lin CH, 2016, EXP THER MED, V11, P2609, DOI 10.3892/etm.2016.3255
  26. LOWRY OH, 1951, J BIOL CHEM, V193, P265
  27. Ma TKW, 2010, BRIT J PHARMACOL, V160, P1273, DOI 10.1111/j.1476-5381.2010.00750.x
  28. MATSUI H, 1995, CARDIOVASC RES, V29, P215, DOI 10.1016/0008-6363(96)88573-7
  29. Pacheco BPM, 2011, J HYPERTENS, V29, P520, DOI 10.1097/HJH.0b013e328341939d
  30. Picatoste B, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0078330
  31. Remuzzi Giuseppe, 2005, Kidney Int Suppl, pS57
  32. Rutherford PA, 1997, EXP NEPHROL, V5, P490
  33. Salles TA, 2015, INT J MOL SCI, V16, P4226, DOI 10.3390/ijms16024226
  34. Sauve M, 2010, DIABETES, V59, P1063, DOI 10.2337/db09-0955
  35. Scirica BM, 2013, NEW ENGL J MED, V369, P1317, DOI 10.1056/NEJMoa1307684
  36. Segall L, 2014, BIOMED RES INT, DOI 10.1155/2014/937398
  37. Sharkovska Y, 2014, J HYPERTENS, V32, P2211, DOI 10.1097/HJH.0000000000000328
  38. Shigeta T, 2012, CIRCULATION, V126, P1838, DOI 10.1161/CIRCULATIONAHA.112.096479
  39. Shimizu MHM, 2005, KIDNEY INT, V68, P2208
  40. Siragy HM, 2010, AM J NEPHROL, V31, P541, DOI 10.1159/000313363
  41. Suda M, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0182422
  42. Takashima S, 2016, KIDNEY INT, V90, P783, DOI 10.1016/j.kint.2016.06.012
  43. Tsuprykov O, 2016, KIDNEY INT, V89, P1049, DOI 10.1016/j.kint.2016.01.016
  44. Udell JA, 2015, DIABETES CARE, V38, P696, DOI 10.2337/dc14-1850
  45. Yamada H, 2017, CARDIOVASC DIABETOL, V16, DOI 10.1186/s12933-017-0546-2
  46. Zhang H, 2016, MOL MED REP, V13, P1593, DOI 10.3892/mmr.2015.4724
  47. Zhang LH, 2015, CARDIOVASC DRUG THER, V29, P243, DOI 10.1007/s10557-015-6592-7