Method to assess the mismatch between the measured and nominal parameters of transcranial magnetic stimulation devices

Carregando...
Imagem de Miniatura
Citações na Scopus
3
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCIENCE BV
Autores
ZACHARIAS, Leonardo Rakauskas
PERES, Andre Salles Cunha
SOUZA, Victor Hugo
BAFFA, Oswaldo
Citação
JOURNAL OF NEUROSCIENCE METHODS, v.322, p.83-87, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Small variations in TMS parameters, such as pulse frequency and amplitude may elicit distinct neurophysiological responses. Assessing the mismatch between nominal and experimental parameters of TMS stimulators is essential for safe application and comparisons of results across studies. New method: A search coil was used to assess exactness and precision errors of amplitude and timing parameters such as interstimulus interval, the period of pulse repetition, and intertrain interval of TMS devices. The method was validated using simulated pulses and applied to six commercial stimulators in single-pulse (spTMS), paired pulse (ppTMS), and repetitive (rTMS) protocols, working at several combinations of intensities and frequencies. Results: In a simulated signal, the maximum exactness error was 1.7% for spTMS and the maximum precision error 1.9% for ppTMS. Three out of six TMS commercial devices showed exactness and precision errors in spTMS amplitude higher than 5%. Moreover, two devices showed amplitude exactness errors higher than 5% in rTMS with parameters suggested by the manufactures. Comparison with existing methods: Currently available tools allow characterization of induced electric field intensity and focality, and pulse waveforms of a single TMS pulse. Our method assesses the mismatch between nominal and experimental values in spTMS, ppTMS and rTMS protocols through the exactness and precision errors of amplitude and timing parameters. Conclusion: This study highlights the importance of evaluating the physical characteristics of TMS devices and protocols, and provides a method for on-site quality assessment of multiple stimulation protocols in clinical and research environments.
Palavras-chave
TMS, Accuracy, Precision, Exactness, Reliability, rTMS, Quality assessment
Referências
  1. Arns M, 2010, BRAIN STIMUL, V3, P124, DOI 10.1016/j.brs.2009.07.005
  2. Cash RFH, 2017, BRAIN STIMUL, V10, P630, DOI 10.1016/j.brs.2017.02.012
  3. Deblieck C, 2008, HUM BRAIN MAPP, V29, P662, DOI 10.1002/hbm.20427
  4. Du XM, 2014, J MOTOR BEHAV, V46, P39, DOI 10.1080/00222895.2013.850401
  5. Ferreri F, 2014, HUM BRAIN MAPP, V35, P1969, DOI 10.1002/hbm.22306
  6. Hannah R, 2017, BRAIN STIMUL, V10, P106, DOI 10.1016/j.brs.2016.09.008
  7. JCGM, 2012, INT VOC METR BAS GEN, P200
  8. Koponen LM, 2018, HUM BRAIN MAPP, V39, P2405, DOI 10.1002/hbm.24010
  9. Lefaucheur JP, 2014, CLIN NEUROPHYSIOL, V125, P2150, DOI 10.1016/j.clinph.2014.05.021
  10. Nieminen JO, 2015, BRAIN STIMUL, V8, P582, DOI 10.1016/j.brs.2015.01.004
  11. Opitz A, 2013, NEUROIMAGE, V81, P253, DOI 10.1016/j.neuroimage.2013.04.067
  12. Pearce AJ, 2013, BRAIN STIMUL, V6, P306, DOI 10.1016/j.brs.2012.05.010
  13. Peterchev AV, 2014, J NEURAL ENG, V11, DOI 10.1088/1741-2560/11/5/056023
  14. Prenesti E, 2015, ACCREDIT QUAL ASSUR, V20, P33, DOI 10.1007/s00769-014-1093-0
  15. Rossini PM, 2015, CLIN NEUROPHYSIOL, V126, P1071, DOI 10.1016/j.clinph.2015.02.001
  16. Rothkegel H, 2010, CLIN NEUROPHYSIOL, V121, P1915, DOI 10.1016/j.clinph.2010.04.006
  17. Ruohonen J, 2010, NEUROPHYSIOL CLIN, V40, P7, DOI 10.1016/j.neucli.2010.01.006
  18. Sommer M, 2006, CLIN NEUROPHYSIOL, V117, P838, DOI 10.1016/j.clinph.2005.10.029
  19. Souza VH, 2018, BIOMED ENG-BIOMED TE, V63, P635, DOI 10.1515/bmt-2016-0240
  20. Souza VH, 2018, J NEUROSCI METH, V309, P109, DOI 10.1016/j.jneumeth.2018.08.023
  21. Thielscher A, 2004, CLIN NEUROPHYSIOL, V115, P1697, DOI 10.1016/j.clinph.2004.02.019
  22. Yaremko R.M, 2013, HDB RES QUANTITATIVE