Quantifying the magnitude of pharyngeal obstruction during sleep using airflow shape

Carregando...
Imagem de Miniatura
Citações na Scopus
31
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
EUROPEAN RESPIRATORY SOC JOURNALS LTD
Autores
MANN, Dwayne L.
TERRILL, Philip I.
AZARBARZIN, Ali
MARIANI, Sara
FRANCIOSINI, Angelo
CAMASSA, Alessandra
GEORGESON, Thomas
TARANTO-MONTEMURRO, Luigi
MESSINEO, Ludovico
Citação
EUROPEAN RESPIRATORY JOURNAL, v.54, n.1, article ID 1802262, 12p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Rationale and objectives: Non-invasive quantification of the severity of pharyngeal airflow obstruction would enable recognition of obstructive versus central manifestation of sleep apnoea, and identification of symptomatic individuals with severe airflow obstruction despite a low apnoea-hypopnoea index (AHI). Here we provide a novel method that uses simple airflow-versus-time (""shape"") features from individual breaths on an overnight sleep study to automatically and non-invasively quantify the severity of airflow obstruction without oesophageal catheterisation. Methods: 41 individuals with suspected/diagnosed obstructive sleep apnoea (AHI range 0-91 events.h(-1)) underwent overnight polysomnography with gold-standard measures of airflow (oronasal pneumotach: ""flow"") and ventilatory drive (calibrated intraoesophageal diaphragm electromyogram: ""drive""). Obstruction severity was defined as a continuous variable (flow: drive ratio). Multivariable regression used airflow shape features (inspiratory/expiratory timing, flatness, scooping, fluttering) to estimate flow: drive ratio in 136264 breaths (performance based on leave-one-patient-out cross-validation). Analysis was repeated using simultaneous nasal pressure recordings in a subset (n=17). Results: Gold-standard obstruction severity (flow: drive ratio) varied widely across individuals independently of AHI. A multivariable model (25 features) estimated obstruction severity breath-by-breath (R-2=0.58 versus gold-standard, p<0.00001; mean absolute error 22%) and the median obstruction severity across individual patients (R-2=0.69, p<0.00001; error 10%). Similar performance was achieved using nasal pressure. Conclusions: The severity of pharyngeal obstruction can be quantified non-invasively using readily available airflow shape information. Our work overcomes a major hurdle necessary for the recognition and phenotyping of patients with obstructive sleep disordered breathing.
Palavras-chave
Referências
  1. Aittokallio T, 2007, COMPUT METH PROG BIO, V85, P8, DOI 10.1016/j.cmpb.2006.09.012
  2. Ayappa I, 2003, SLEEP MED REV, V7, P9, DOI 10.1053/smrv.2002.0238
  3. Ayappa I, 2000, SLEEP, V23, P763, DOI 10.1093/sleep/23.6.763
  4. Azarbarzin A, 2017, EUR RESPIR J, V50, DOI 10.1183/13993003.00345-2017
  5. Bradley TD, 2005, NEW ENGL J MED, V353, P2025, DOI 10.1056/NEJMoa051001
  6. Brown LK, 2006, CHEST, V130, P312, DOI 10.1378/chest.130.2.312
  7. Calero G, 2006, RESP MED, V100, P813, DOI 10.1016/j.rmed.2005.09.016
  8. Camassa A, 2018, 40 ANN INT C IEEE EN
  9. Catcheside P, 2014, J SLEEP RES, V2014, P59
  10. Catcheside PG, 2014, SLEEP BIOL RHYTHMS, V12, P59
  11. Chandra S, 2013, SLEEP BREATH, V17, P1193, DOI 10.1007/s11325-013-0823-6
  12. Clark SA, 1998, AM J RESP CRIT CARE, V158, P713, DOI 10.1164/ajrccm.158.3.9708056
  13. de Godoy LBM, 2015, LUNG, V193, P387, DOI 10.1007/s00408-015-9714-x
  14. Douglas NJ, 2000, AM J RESP CRIT CARE, V161, P1413, DOI 10.1164/ajrccm.161.5.16158b
  15. DOWNEY R, 1993, SLEEP, V16, P620, DOI 10.1093/sleep/16.7.620
  16. Edwards BA, 2016, AM J RESP CRIT CARE, V194, P1413, DOI 10.1164/rccm.201601-0099OC
  17. Edwards N, 2000, AM J RESP CRIT CARE, V162, P252, DOI 10.1164/ajrccm.162.1.9905006
  18. Genta PR, 2017, CHEST, V152, P537, DOI 10.1016/j.chest.2017.06.017
  19. GUILLEMINAULT C, 1982, EUR J PEDIATR, V139, P165, DOI 10.1007/BF01377349
  20. Guilleminault C, 1996, CHEST, V109, P901, DOI 10.1378/chest.109.4.901
  21. GUILLEMINAULT C, 1995, J SLEEP RES, V4, P117, DOI 10.1111/j.1365-2869.1995.tb00200.x
  22. Hosselet JJ, 1998, AM J RESP CRIT CARE, V157, P1461, DOI 10.1164/ajrccm.157.5.9708008
  23. Iber C, 2007, AASM MANUAL SCORING
  24. Joosten SA, 2017, SLEEP, V40, DOI 10.1093/sleep/zsx094
  25. Kaplan V, 2000, EUR RESPIR J, V15, P570, DOI 10.1034/j.1399-3003.2000.15.24.x
  26. Luo YM, 2008, EUR RESPIR J, V31, P650, DOI 10.1183/09031936.00049907
  27. Mooney AM, 2012, J CLIN SLEEP MED, V8, P177, DOI 10.5664/jcsm.1774
  28. Nakano H, 2013, SLEEP, V36, P1361, DOI 10.5665/sleep.2966
  29. Newman JP, 1996, LARYNGOSCOPE, V106, P1089, DOI 10.1097/00005537-199609000-00009
  30. ONAL E, 1986, J APPL PHYSIOL, V61, P1444
  31. Palombini LO, 2013, SLEEP, V36, P1663, DOI 10.5665/sleep.3122
  32. Pamidi S, 2017, ANN AM THORAC SOC, V14, P1076, DOI 10.1513/AnnalsATS.201704-318WS
  33. Pepin JL, 2012, RESPIRATION, V83, P559, DOI 10.1159/000335839
  34. Randerath WJ, 2013, SLEEP, V36, P363, DOI 10.5665/sleep.2450
  35. Rapoport DM, 2018, AM J RESP CRIT CARE, V197, P1104, DOI 10.1164/rccm.201802-0210ED
  36. Sands SA, 2018, AM J RESP CRIT CARE, V197, P1187, DOI 10.1164/rccm.201707-1435OC
  37. Schneider H, 2009, EUR RESPIR J, V33, P1068, DOI 10.1183/09031936.00063008
  38. STOOHS R, 1991, RESP PHYSIOL, V85, P151, DOI 10.1016/0034-5687(91)90058-Q
  39. Teschler H, 1996, AM J RESP CRIT CARE, V154, P734, DOI 10.1164/ajrccm.154.3.8810613
  40. Zhi YX, 2018, SLEEP MED, V48, P70, DOI 10.1016/j.sleep.2018.04.006