Association of BDNF, HTR2A, TPH1, SLC6A4, and COMT polymorphisms with tDCS and escitalopram efficacy: ancillary analysis of a double-blind, placebo-controlled trial

Carregando...
Imagem de Miniatura
Citações na Scopus
17
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
ASSOC BRASILEIRA PSIQUIATRIA
Autores
Citação
BRAZILIAN JOURNAL OF PSYCHIATRY, v.42, n.2, p.128-135, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objective: We investigated whether single nucleotide polymorphisms (SNPs) associated with neuroplasticity and activity of monoamine neurotransmitters, such as the brain-derived neurotrophic factor (BDNF, rs6265), the serotonin transporter (SLC6A4, rs25531), the tryptophan hydroxylase 1 (TPH1, rs1800532), the 5-hydroxytryptamine receptor 2A (HTR2A, rs6311, rs6313, rs7997012), and the catechol-O-methyltransferase (COMT, rs4680) genes, are associated with efficacy of transcranial direct current stimulation (tDCS) in major depression. Methods: Data from the Escitalopram vs. Electrical Current Therapy for Treating Depression Clinical Study (ELECT-TDCS) were used. Participants were antidepressant-free at baseline and presented with an acute, moderate-to-severe unipolar depressive episode. They were randomized to receive escitalopram/tDCS-sham (n=75), tDCS/placebo-pill (n=75), or placebo-pill/sham-tDCS (n=45). General linear models assessed the interaction between treatment group and allele-wise carriers. Additional analyses were performed for each group and each genotype separately. Results: Pairwise group comparisons (tDCS vs. placebo, tDCS vs. escitalopram, and escitalopram vs. placebo) did not identify alleles associated with depression improvement. In addition, exploratory analyses also did not identify any SNP unequivocally associated with improvement of depression in any treatment group. Conclusion: Larger, combined datasets are necessary to identify candidate genes for tDCS response.
Palavras-chave
Major depressive disorder, non-invasive brain stimulation, single-nucleotide polymorphism, selective serotonin reuptake inhibitors, randomized clinical trial
Referências
  1. Amorim Patricia, 2000, Revista Brasileira de Psiquiatria, V22, P106
  2. Antal A, 2017, CLIN NEUROPHYSIOL, V128, P1774, DOI 10.1016/j.clinph.2017.06.001
  3. Aparicio LVM, 2016, BRAIN STIMUL, V9, P671, DOI 10.1016/j.brs.2016.05.004
  4. Baeken Chris, 2011, Dialogues Clin Neurosci, V13, P139
  5. Bikson M, 2018, BRAIN STIMUL, V11, P465, DOI 10.1016/j.brs.2017.12.008
  6. Bocchio-Chiavetto L, 2008, NEUROSCI LETT, V437, P130, DOI 10.1016/j.neulet.2008.04.005
  7. Borrione L, 2018, J ECT, V34, P153, DOI 10.1097/YCT.0000000000000512
  8. Brunoni AR, 2017, NEW ENGL J MED, V376, P2523, DOI 10.1056/NEJMoa1612999
  9. Brunoni AR, 2013, EUR NEUROPSYCHOPHARM, V23, P1530, DOI 10.1016/j.euroneuro.2013.03.009
  10. Brunoni AR, 2019, BRAZ J PSYCHIAT, V41, P70, DOI 10.1590/1516-4446-2017-0018
  11. Brunoni AR, 2018, PROG NEURO-PSYCHOPH, V86, P211, DOI 10.1016/j.pnpbp.2018.06.003
  12. Brunoni AR, 2016, BRIT J PSYCHIAT, V208, P522, DOI 10.1192/bjp.bp.115.164715
  13. Brunoni AR, 2015, WORLD J BIOL PSYCHIA, V16, P114, DOI 10.3109/15622975.2014.958101
  14. Brunoni AR, 2014, EUR NEUROPSYCHOPHARM, V24, P1144, DOI 10.1016/j.euroneuro.2014.03.006
  15. Brunoni AR, 2015, SAO PAULO MED J, V133, P252, DOI 10.1590/1516-3180.2014.00351712
  16. Brunoni AR, 2012, BRAIN STIMUL, V5, P175, DOI 10.1016/j.brs.2011.03.002
  17. Brunoni AR, 2011, INT J METH PSYCH RES, V20, pE19, DOI 10.1002/mpr.338
  18. Chen ZY, 2006, SCIENCE, V314, P140, DOI 10.1126/science.1129663
  19. Collier DA, 1996, MOL PSYCHIATR, V1, P453
  20. Crisafulli C, 2011, FRONT PHARMACOL, V2, DOI 10.3389/fphar.2011.00006
  21. de la Fuente-Fernandez R, 2004, BIOL PSYCHIAT, V56, P67, DOI 10.1016/j.biopsych.2003.11.019
  22. Domschke K, 2010, INT J NEUROPSYCHOPH, V13, P93, DOI 10.1017/S1461145709000030
  23. Du LS, 2000, AM J MED GENET, V96, P56, DOI 10.1002/(SICI)1096-8628(20000207)96:1<56::AID-AJMG12>3.0.CO;2-L
  24. Egan MF, 2003, CELL, V112, P257, DOI 10.1016/S0092-8674(03)00035-7
  25. Fernandes BS, 2017, BMC MED, V15, DOI 10.1186/s12916-017-0849-x
  26. Fischer S, 2019, NEUROSCI BIOBEHAV R, V96, P182, DOI 10.1016/j.neubiorev.2018.11.009
  27. Gabriel Stacey, 2009, Curr Protoc Hum Genet, VChapter 2, DOI 10.1002/0471142905.hg0212s60
  28. Gaynes BN, 2008, CLEV CLIN J MED, V75, P57, DOI 10.3949/ccjm.75.1.57
  29. Hing B, 2018, AM J MED GENET B, V177, P143, DOI 10.1002/ajmg.b.32616
  30. Jongkees BJ, 2019, EUR J NEUROSCI, V49, P263, DOI 10.1111/ejn.14261
  31. Kaiser RH, 2015, JAMA PSYCHIAT, V72, P603, DOI 10.1001/jamapsychiatry.2015.0071
  32. Kato M, 2010, MOL PSYCHIATR, V15, P473, DOI 10.1038/mp.2008.116
  33. Kishi T, 2013, EUR ARCH PSY CLIN N, V263, P105, DOI 10.1007/s00406-012-0337-4
  34. Lauretto MS, 2009, GENET MOL BIOL, V32, P619, DOI 10.1590/S1415-47572009000300028
  35. Lin JY, 2014, J AFFECT DISORDERS, V168, P430, DOI 10.1016/j.jad.2014.06.012
  36. Loo CK, 2018, BRAIN STIMUL, V11, P125, DOI 10.1016/j.brs.2017.10.011
  37. LOTTA T, 1995, BIOCHEMISTRY-US, V34, P4202, DOI 10.1021/bi00013a008
  38. Malhotra AK, 2002, AM J PSYCHIAT, V159, P652, DOI 10.1176/appi.ajp.159.4.652
  39. Martin DM, 2018, BRAIN STIMUL, V11, P1282, DOI 10.1016/j.brs.2018.08.011
  40. Martin DM, 2018, NEUROSCI BIOBEHAV R, V90, P137, DOI 10.1016/j.neubiorev.2018.04.008
  41. Moffa AH, 2018, PSYCHIAT CLIN N AM, V41, P447, DOI 10.1016/j.psc.2018.05.002
  42. Monte-Silva K, 2010, J PHYSIOL-LONDON, V588, P3415, DOI 10.1113/jphysiol.2010.190181
  43. Mutz J, 2018, NEUROSCI BIOBEHAV R, V92, P291, DOI 10.1016/j.neubiorev.2018.05.015
  44. Palm U, 2018, NEUROMODULATION, V21, P323, DOI 10.1111/ner.12686
  45. Palm U, 2013, J AFFECT DISORDERS, V150, P659, DOI 10.1016/j.jad.2013.03.015
  46. Parra FC, 2003, P NATL ACAD SCI USA, V100, P177, DOI 10.1073/pnas.0126614100
  47. Pattwell SS, 2012, J NEUROSCI, V32, P2410, DOI 10.1523/JNEUROSCI.5205-11.2012
  48. Plewnia C, 2013, CORTEX, V49, P1801, DOI 10.1016/j.cortex.2012.11.002
  49. Seibt O, 2015, BRAIN STIMUL, V8, P590, DOI 10.1016/j.brs.2015.01.401
  50. Serretti A, 2007, MOL PSYCHIATR, V12, P247, DOI 10.1038/sj.mp.4001926
  51. Sherry ST, 2001, NUCLEIC ACIDS RES, V29, P308, DOI 10.1093/nar/29.1.308
  52. Silverstein WK, 2015, DEPRESS ANXIETY, V32, P871, DOI 10.1002/da.22424
  53. Stephens JA, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-14030-7
  54. Van Oekelen D, 2003, LIFE SCI, V72, P2429, DOI 10.1016/S0024-3205(03)00141-3
  55. Woods AJ, 2016, CLIN NEUROPHYSIOL, V127, P1031, DOI 10.1016/j.clinph.2015.11.012
  56. Zhao XF, 2015, PSYCHIAT GENET, V25, P1, DOI 10.1097/YPG.0000000000000070
  57. Zou YF, 2010, EUR NEUROPSYCHOPHARM, V20, P535, DOI 10.1016/j.euroneuro.2009.12.005