Comparison of methods for the detection of in vitro synergy in multidrug-resistant gram-negative bacteria

Carregando...
Imagem de Miniatura
Citações na Scopus
9
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
BMC
Citação
BMC MICROBIOLOGY, v.20, n.1, article ID 97, 7p, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background The use of combined antibiotic therapy has become an option for infections caused by multidrug-resistant (MDR) bacteria. The time-kill (TK) assay is considered the gold standard method for the evaluation of in vitro synergy, but it is a time-consuming and expensive method. The purpose of this study was to evaluate two methods for testing in vitro antimicrobial combinations: the disk diffusion method through disk approximation (DA) and the agar gradient diffusion method via the MIC:MIC ratio. The TK assay was included as the gold standard. MDR Gram-negative clinical isolates (n = 62; 28 Pseudomonas aeruginosa, 20 Acinetobacter baumannii, and 14 Serratia marcescens) were submitted to TK, DA, and MIC:MIC ratio synergy methods. Results Overall, the agreement between the DA and TK assays ranged from 20 to 93%. The isolates of A. baumannii showed variable results of synergism according to TK, and the calculated agreement was statistically significant in this species against fosfomycin with meropenem including colistin-resistant isolates. The MIC:MIC ratiometric agreed from 35 to 71% with TK assays. The kappa test showed good agreement for the combination of colistin with amikacin (K = 0.58; P = 0.04) among the colistin-resistant A. baumannii isolates. Conclusions The DA and MIC:MIC ratiometric methods are easier to perform and might be a more viable tool for clinical microbiology laboratories.
Palavras-chave
Synergy, Time-kill, Disk approximation, MIC, MIC ratio, Gram-negative, Multidrug-resistant
Referências
  1. Bae S, 2016, ANTIMICROB AGENTS CH, V60, P6774, DOI 10.1128/AAC.00839-16
  2. Bradford PA, 2004, CLIN INFECT DIS, V39, P55, DOI 10.1086/421495
  3. Brennan-Krohn T, 2018, ANTIMICROB AGENTS CH, V62, DOI 10.1128/AAC.00873-18
  4. Brochmann RP, 2016, BMC VET RES, V12, DOI 10.1186/s12917-016-0751-3
  5. Chachanidze V, 2009, INTERDISCIP PERSPECT, P984934
  6. Clinical and Laboratory Standards Institute, 2018, M100S28 CLSI
  7. EUCAST, 2018, BREAKPOINT TABLES IN
  8. Evren E, 2013, DIAGN MICR INFEC DIS, V76, P335, DOI 10.1016/j.diagmicrobio.2013.04.004
  9. Fleiss J., 1981, STAT METHODS RATES P
  10. Gaibani P, 2014, J ANTIMICROB CHEMOTH, V69, P1856, DOI 10.1093/jac/dku065
  11. Garcia-Salguero C, 2015, ANTIMICROB AGENTS CH, V59, P5959, DOI 10.1128/AAC.00873-15
  12. Giamarellou H, 2010, INT J ANTIMICROB AG, V36, pS50, DOI 10.1016/j.ijantimicag.2010.11.014
  13. Chagas TPG, 2014, DIAGN MICR INFEC DIS, V79, P468, DOI 10.1016/j.diagmicrobio.2014.03.006
  14. Hamidian M, 2019, MICROB GENOMICS, V5, DOI 10.1099/mgen.0.000306
  15. Larsen MV, 2012, J CLIN MICROBIOL, V50, P1355, DOI 10.1128/JCM.06094-11
  16. Leite GC, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0151270
  17. Logan LK, 2017, J INFECT DIS, V215, pS28, DOI 10.1093/infdis/jiw282
  18. Mendes RE, 2007, J CLIN MICROBIOL, V45, P544, DOI 10.1128/JCM.01728-06
  19. Montanari MP, 2005, DIAGN MICR INFEC DIS, V53, P157, DOI 10.1016/j.diagmicrobio.2005.06.002
  20. Nastro M, 2014, J CHEMOTHERAPY, V26, P211, DOI 10.1179/1973947813Y.0000000136
  21. Ni WT, 2015, INT J ANTIMICROB AG, V45, P8, DOI 10.1016/j.ijantimicag.2014.10.002
  22. OSTENSON RC, 1977, ANTIMICROB AGENTS CH, V12, P655, DOI 10.1128/AAC.12.6.655
  23. Pankey GA, 2005, ANTIMICROB AGENTS CH, V49, P2959, DOI 10.1128/AAC.49.7.2959-2964.2005
  24. Pankey GA, 2013, DIAGN MICR INFEC DIS, V77, P220, DOI 10.1016/j.diagmicrobio.2013.07.006
  25. Pankey GA, 2011, DIAGN MICR INFEC DIS, V70, P561, DOI 10.1016/j.diagmicrobio.2011.05.003
  26. Pankey GA, 2009, DIAGN MICR INFEC DIS, V63, P228, DOI 10.1016/j.diagmicrobio.2008.11.002
  27. Neto LVP, 2019, J ANTIMICROB CHEMOTH, V74, P177, DOI 10.1093/jac/dky406
  28. Petersen PJ, 2006, J ANTIMICROB CHEMOTH, V57, P573, DOI 10.1093/jac/dki477
  29. Pillai SK, 2005, ANTIBIOTICS LAB MED, V5, P365
  30. Rossi F, 2009, J MED MICROBIOL, V58, P1522, DOI 10.1099/jmm.0.011080-0
  31. Sakoulas G, 2016, ANTIMICROB AGENTS CH, V60, P6609, DOI 10.1128/AAC.01192-16
  32. Samonis G, 2012, EUR J CLIN MICROBIOL, V31, P695, DOI 10.1007/s10096-011-1360-5
  33. Seemann T, 2014, BIOINFORMATICS, V30, P2068, DOI 10.1093/bioinformatics/btu153
  34. Sharma R, 2017, INT J ANTIMICROB AG, V49, P224, DOI 10.1016/j.ijantimicag.2016.10.025
  35. Silva FM, 2011, MICROB DRUG RESIST, V17, P215, DOI 10.1089/mdr.2010.0140
  36. Singkham-in U, 2018, DIAGN MICR INFEC DIS, V91, P169, DOI 10.1016/j.diagmicrobio.2018.01.008
  37. Sopirala MM, 2010, ANTIMICROB AGENTS CH, V54, P4678, DOI 10.1128/AAC.00497-10
  38. Stein C, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0126479
  39. Sy CL, 2016, J CLIN MICROBIOL, V54, P565, DOI 10.1128/JCM.01779-15
  40. Tumbarello M, 2015, J ANTIMICROB CHEMOTH, V70, P2133, DOI 10.1093/jac/dkv086