Effects of VAChT reduction and alpha 7nAChR stimulation by PNU-282987 in lung inflammation in a model of chronic allergic airway inflammation

Carregando...
Imagem de Miniatura
Citações na Scopus
12
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER
Autores
MIRANDA, Claudia J. C. P.
SANTANA, Fernanda R.
BITTENCOURT-MERNAK, Marcia
FESTA, Sergio
CAPERUTO, Luciana C.
Citação
EUROPEAN JOURNAL OF PHARMACOLOGY, v.882, article ID 173239, 16p, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The cholinergic anti-inflammatory pathway has been shown to regulate lung inflammation and cytokine release in acute models of inflammation, mainly via alpha 7 nicotinic receptor (alpha 7nAChR). We aimed to evaluate the role of endogenous acetylcholine in chronic allergic airway inflammation in mice and the effects of therapeutic nAChR stimulation in this model. We first evaluated lung inflammation and remodeling on knock-down mice with 65% of vesicular acetylcholine transport (VAChT) gene reduction (KDVAChT) and wild-type(WT) controls that were subcutaneously sensitized and then inhaled with ovalbumin(OVA). We then evaluated the effects of PNU282987(0.5-to-2mg/kg),( alpha 7nAChR agonist) treatment in BALB/c male mice intraperitoneal sensitized and then inhaled with OVA. Another OVA-sensitized-group was treated with PNU-282987 plus Methyllycaconitine (MLA,1 mg/kg, alpha 7nAChR antagonist) to confirm that the effects observed by PNU were due to alpha 7nAChR. We showed that KDVAChT-OVA mice exhibit exacerbated airway inflammation when compared to WT-OVA mice. In BALB/c, PNU-282987 treatment reduced the number of eosinophils in the blood, BAL fluid, and around airways, and also decreased pulmonary levels of IL-4,IL-13,IL-17, and IgE in the serum of OVA-exposed mice. MLA pretreatment abolished all the effects of PNU-282987. Additionally, we showed that PNU-282987 inhibited STAT3phosphorylation and reduced SOCS3 expression in the lung. These data indicate that endogenous cholinergic tone is important to control allergic airway inflammation in a murine model. Moreover, alpha 7nAChR is involved in the control of eosinophilic inflammation and airway remodeling, possibly via inhibition of STAT3/SOCS3 pathways. Together these data suggest that cholinergic anti-inflammatory system mainly alpha 7nAChR should be further considered as a therapeutic target in asthma.
Palavras-chave
Vesicular acetylcholine transporter, Chronic allergic airway inflammation, a7 nicotinic acetylcholine
Referências
  1. Antunes GL, 2020, J CELL PHYSIOL, V235, P1838, DOI 10.1002/jcp.29101
  2. Araujo BB, 2008, EUR RESPIR J, V32, P61, DOI 10.1183/09031936.00147807
  3. Blanchet MR, 2007, J LEUKOCYTE BIOL, V81, P1245, DOI 10.1189/jlb.0906548
  4. Blanchet MR, 2005, EUR RESPIR J, V26, P21, DOI 10.1183/09031936.05.00116104
  5. Bodnar AL, 2005, J MED CHEM, V48, P905, DOI 10.1021/jm049363q
  6. Chatterjee PK, 2009, AM J PHYSIOL-CELL PH, V297, pC1294, DOI 10.1152/ajpcell.00160.2009
  7. Chetta A, 1997, CHEST, V111, P852, DOI 10.1378/chest.111.4.852
  8. Conrad M.L., 2009, CLIN EXP ALLERGY, DOI [10.1111/j.1365-2222.2009, DOI 10.1111/J.1365-2222.2009]
  9. de Castro BM, 2009, MOL CELL BIOL, V29, P5238, DOI 10.1128/MCB.00245-09
  10. de Jonge WJ, 2005, NAT IMMUNOL, V6, P844, DOI 10.1038/ni1229
  11. dos Santos TM, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.01183
  12. Dullaers M, 2017, J ALLERGY CLIN IMMUN, V140, P76, DOI 10.1016/j.jaci.2016.09.020
  13. Fukaya Y, 1996, AM J PHYSIOL-HEART C, V270, pH99
  14. Galle-Treger L, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms13202
  15. Gallowitsch-Puerta M, 2005, ANN NY ACAD SCI, V1062, P209, DOI 10.1196/annals.1358.024
  16. Global Initiative for Asthma, 2019, GLOB STRAT ASTHM MAN
  17. Greenlee K.J., 2013, KENDRA, V71, P233, DOI [10.1038/mp.2011.182, DOI 10.1038/MP.2011.182]
  18. Halwani R, 2010, CURR OPIN PHARMACOL, V10, P236, DOI 10.1016/j.coph.2010.06.004
  19. Hasegawa T, 2017, EUR CYTOKINE NETW, V28, P8, DOI 10.1684/ecn.2017.0390
  20. Horiguchi K, 2009, J NEUROSCI RES, V87, P2740, DOI 10.1002/jnr.22102
  21. Ikarashi Y, 1998, NEUROCHEM INT, V33, P255, DOI 10.1016/S0197-0186(98)00029-1
  22. Ishii M, 2006, CURR PHARM DESIGN, V12, P3573, DOI 10.2174/138161206778522056
  23. Jeremias IC, 2016, MOL NEUROBIOL, V53, P6635, DOI 10.1007/s12035-015-9538-y
  24. Jiang YL, 2014, CELL PHYSIOL BIOCHEM, V33, P389, DOI 10.1159/000356678
  25. Kawashima K, 2007, LIFE SCI, V80, P2314, DOI 10.1016/j.lfs.2007.02.036
  26. Leite HR, 2016, BRAIN BEHAV IMMUN, V57, P282, DOI 10.1016/j.bbi.2016.05.005
  27. Lemanske RF, 2010, J ALLERGY CLIN IMMUN, V125, pS95, DOI 10.1016/j.jaci.2009.10.047
  28. Lemjabbar H, 1999, AM J RESP CRIT CARE, V159, P1298, DOI 10.1164/ajrccm.159.4.9708080
  29. Lima R.deF., 2010, J NEUROCHEM, V71, P233, DOI [10.1038/mp.2011.182, DOI 10.1038/MP.2011.182]
  30. Lips KS, 2007, LIFE SCI, V80, P2263, DOI 10.1016/j.lfs.2007.01.026
  31. Lips KS, 2005, AM J RESP CELL MOL, V33, P79, DOI 10.1165/rcmb.2004-0363OC
  32. Maouche K, 2009, AM J PATHOL, V175, P1868, DOI 10.2353/ajpath.2009.090212
  33. Mishra NC, 2008, J IMMUNOL, V180, P7655, DOI 10.4049/jimmunol.180.11.7655
  34. Murphy DM, 2010, CHEST, V137, P1417, DOI 10.1378/chest.09-1895
  35. Pavlov V.A., 2006, CONTROLLING INFLAMMA, P1037
  36. Pena G, 2010, J MOL MED, V88, P851, DOI 10.1007/s00109-010-0628-z
  37. Peng GY, 2010, J IMMUNOL, V184
  38. Pinheiro NM, 2017, FASEB J, V31, P320, DOI 10.1096/fj.201600431R
  39. Pinheiro NM, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0120441
  40. Pitsikas N, 2009, BEHAV BRAIN RES, V200, P160, DOI 10.1016/j.bbr.2009.01.014
  41. Possa SS, 2013, FRONT PHARMACOL, V4, DOI 10.3389/fphar.2013.00046
  42. Prado CM, 2006, AM J RESP CELL MOL, V35, P457, DOI 10.1165/rcmb.2005-0391OC
  43. Prado MAM, 2002, NEUROCHEM INT, V41, P291, DOI 10.1016/S0197-0186(02)00044-X
  44. Prado VF, 2006, NEURON, V51, P601, DOI 10.1016/j.neuron.2006.08.005
  45. Proskocil BJ, 2004, ENDOCRINOLOGY, V145, P2498, DOI 10.1210/en.2003-1728
  46. Racke K, 2006, EUR J PHARMACOL, V533, P57, DOI 10.1016/j.ejphar.2005.12.050
  47. Roy A, 2013, FASEB J, V27, P5072, DOI 10.1096/fj.13-238279
  48. Santana FPR, 2019, ECOTOX ENVIRON SAFE, V167, P494, DOI 10.1016/j.ecoenv.2018.10.005
  49. Seki Y, 2003, NAT MED, V9, P1047, DOI 10.1038/nm896
  50. Shao ZZ, 2019, MOL MED REP, V19, P3791, DOI 10.3892/mmr.2019.10016
  51. Simeone-Penney M.C., 2007, J IMMUNOL
  52. Su X, 2007, AM J RESP CELL MOL, V37, P186, DOI 10.1165/rcmb.2006-0240OC
  53. Toledo AC, 2013, BRIT J PHARMACOL, V168, P1736, DOI 10.1111/bph.12062
  54. van Westerloo DJ, 2010, WIEN MED WOCHENSCHR, V160, P112, DOI 10.1007/s10354-010-0761-x
  55. Verbout NG, 2009, AM J PHYSIOL-LUNG C, V297, pL228, DOI 10.1152/ajplung.90540.2008
  56. Vieira RP, 2007, AM J RESP CRIT CARE, V176, P871, DOI 10.1164/rccm.200610-1567OC
  57. Weibel E.R., 1963, LAB INVEST
  58. Yamada M, 2018, FRONT PHARMACOL, V9, DOI 10.3389/fphar.2018.01426
  59. Yin YL, 2015, HUM IMMUNOL, V76, P775, DOI 10.1016/j.humimm.2015.09.037
  60. Yu M, 2018, J ALLERGY CLIN IMMUN, V142, P1618, DOI 10.1016/j.jaci.2018.04.001
  61. Zar HJ, 2012, PEDIATR DRUGS, V14, P353, DOI 10.2165/11597420-000000000-00000