Spatial-temporal variability of metal pollution across an industrial district, evidencing the environmental inequality in Sao Paulo

Carregando...
Imagem de Miniatura
Citações na Scopus
13
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCI LTD
Autores
LOCOSSELLI, Giuliano Maselli
CHACON-MADRIZ, Katherine
ARRUDA, Marco Aurelio Zezzi
CAMARGO, Evelyn Pereira de
KAMIGAUTI, Leonardo Yoshiaki
TRINDADE, Ricardo Ivan Ferreira da
ANDRADE, Maria de Fatima
ANDRE, Carmen Diva Saldiva de
Citação
ENVIRONMENTAL POLLUTION, v.263, article ID 114583, 8p, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Although air pollution decreased in some cities that shifted from an industrial to a service-based economy, and vehicular emission regulation became more restrictive, it is still a major risk factor for mortality worldwide. In central Sao Paulo, Brazil, air quality monitoring stations and tree-ring analyses revealed a decreasing trend in the concentrations of particulate matter and metals. Such trends, however, may not be observed in industrial districts located in the urban periphery, where the usual mobile sources may be combined with local stationary sources. To evaluate environmental pollution in an industrial district in southeastern Sao Paulo, we assessed its spatial variability, by measuring magnetic properties and concentrations of Al, Ba, Ca, Cl, Cu, Fe, K, Mg, Mn, P, S, Sr, Zn in the bark of 62 trees, and its temporal trends, by measuring Cd, Cu, Ni, Pb, V, Zn in tree rings of three trees. Source apportionment analysis based on tree barks revealed two clusters with high concentrations of metals, one related to vehicular and industrial emissions (Al, Ba, Cu, Fe, Zn) in the east side of the industrial cluster, and the other related to soil resuspension (Cu, Zn, Mn) in its west side. These patterns are also supported by the magnetic properties of bark associated with iron oxides and titanium-iron alloy concentrations. Dendrochemical analyses revealed that only the concentrations of Pb consistently decreased over the last four decades. The concentrations of Cd, Cu, Ni, V, and Zn did not significantly decrease over time, in contrast with their negative trends previously reported in central Sao Paulo. This combined biomonitoring approach revealed spatial clusters of metal concentration in the vicinity of this industrial cluster and showed that the local population has not benefited from the decreasing polluting metal concentrations in the last decades.
Palavras-chave
Biomonitoring, Tree bark, Tree ring, Dendrochemistry, Megacities
Referências
  1. Almeida S., 2014, WIT T ECOL ENV, V181, P683
  2. Andrade MD, 2012, AIR QUAL ATMOS HLTH, V5, P79, DOI 10.1007/s11869-010-0104-5
  3. Anguelovski I, 2013, J PLAN EDUC RES, V33, P160, DOI 10.1177/0739456X13478019
  4. Austruy A, 2019, CHEMOSPHERE, V220, P116, DOI 10.1016/j.chemosphere.2018.12.072
  5. Benvenga S, 2015, REV ENDOCR METAB DIS, V16, P319, DOI 10.1007/s11154-016-9327-6
  6. Beramendi-Orosco LE, 2013, APPL GEOCHEM, V39, P78, DOI 10.1016/j.apgeochem.2013.10.003
  7. Brignole D, 2018, CHEMOSPHERE, V195, P508, DOI 10.1016/j.chemosphere.2017.12.107
  8. Camargo Rosalinda Y. A., 2006, Clinics, V61, P307, DOI 10.1590/S1807-59322006000400006
  9. CEM, 2019, BAS INF CENS DEM 201
  10. CETESB, 2017, QUALAR SIST INF QUAL
  11. Chacon-Madrid K, 2018, J ANAL ATOM SPECTROM, V33, P1720, DOI [10.1039/c8ja00254a, 10.1039/C8JA00254A]
  12. Cheng Z, 2016, ENVIRON INT, V89-90, P212, DOI 10.1016/j.envint.2016.02.003
  13. Chiarantini L, 2016, SCI TOTAL ENVIRON, V569, P105, DOI 10.1016/j.scitotenv.2016.06.029
  14. Chrabaszcz M, 2017, POL J ENVIRON STUD, V26, P453, DOI 10.15244/pjoes/65908
  15. Deimling MJ, 2015, REV ELECTRON GEST ED, V19, P805, DOI 10.5902/2236117015957
  16. Dinis L, 2016, DENDROCHRONOLOGIA, V37, P96, DOI 10.1016/j.dendro.2015.12.011
  17. Evans M., 2003, ENVIRON RES
  18. Freitas CU, 2010, ENVIRON RES, V110, P112, DOI [10.1016/j.envres.2009.10.009, DOI 10.1016/J.ENVRES.2009.10.009]
  19. Geraldo SM, 2014, RADIAT PHYS CHEM, V95, P346, DOI 10.1016/j.radphyschem.2013.03.012
  20. Gueguen F, 2012, CHEMOSPHERE, V86, P1013, DOI 10.1016/j.chemosphere.2011.11.040
  21. HAGEMEYER J., 2000, TRACE ELEMENTS THEIR, P375
  22. Health Effects Institute, 2019, STAT GLOB AIR 2019 S
  23. Hermelin B, 2007, GEOGR ANN B, V89B, P59, DOI 10.1111/j.1468-0467.2007.00260.x
  24. Hofman J, 2017, ENVIRON SCI TECHNOL, V51, P6648, DOI 10.1021/acs.est.7b00832
  25. Johnson R. A., 2007, APPL MULTIVARIATE ST
  26. KELLERMAN A, 1985, PROF GEOGR, V37, P133, DOI 10.1111/j.0033-0124.1985.00133.x
  27. Kuklinska K, 2015, ATMOS POLLUT RES, V6, P129, DOI 10.5094/APR.2015.015
  28. LEPP NW, 1975, ENVIRON POLLUT, V9, P49, DOI 10.1016/0013-9327(75)90055-5
  29. Locosselli GM, 2019, SCI TOTAL ENVIRON, V666, P652, DOI 10.1016/j.scitotenv.2019.02.291
  30. Locosselli GM, 2018, ENVIRON POLLUT, V242, P320, DOI 10.1016/j.envpol.2018.06.098
  31. Moreira TCL, 2016, ENVIRON INT, V91, P271, DOI 10.1016/j.envint.2016.03.005
  32. LUKASZEWSKI Z, 1993, TREES-STRUCT FUNCT, V7, P169, DOI 10.1007/BF00199618
  33. Maher B. A., 1999, QUATERNARY CLIMATES
  34. Masri S, 2015, J AIR WASTE MANAGE, V65, P287, DOI 10.1080/10962247.2014.982307
  35. Maykut NN, 2003, ENVIRON SCI TECHNOL, V37, P5135, DOI 10.1021/es030370y
  36. Mihaljevic M, 2008, WATER AIR SOIL POLL, V188, P311, DOI 10.1007/s11270-007-9546-2
  37. Miller AJ, 2019, ATMOS POLLUT RES, V10, P784, DOI 10.1016/j.apr.2018.12.006
  38. Monteiro Fagner Diego Spíndola Correia, 2017, Nova econ., V27, P247, DOI 10.1590/0103-6351/2862
  39. Moreira TCL, 2018, FRONT ENV SCI-SWITZ, V6, DOI 10.3389/fenvs.2018.00072
  40. Odabasi M, 2015, ENVIRON SCI TECHNOL, V49, P2105, DOI 10.1021/es506316t
  41. Paoliello MMB, 2007, ENVIRON RES, V103, P288, DOI 10.1016/j.envres.2006.06.013
  42. Pessoa GD, 2017, TALANTA, V167, P317, DOI 10.1016/j.talanta.2017.02.029
  43. QGIS Development Team, 2019, QGIS GEOGR INF SYST
  44. Querol X, 2007, ATMOS ENVIRON, V41, P7219, DOI 10.1016/j.atmosenv.2007.05.022
  45. R Core Team, 2018, R LANG ENV STAT COMP
  46. RAGSDALE HL, 1988, BIOGEOCHEMISTRY, V6, P21, DOI 10.1007/BF00002930
  47. Salvo A, 2017, NAT COMMUN, V8, DOI 10.1038/s41467-017-00041-5
  48. Sawyer RF, 2010, J EXPO SCI ENV EPID, V20, P487, DOI 10.1038/jes.2010.44
  49. Scharnweber T., 2016, SCI TOTAL ENVIRON, P566
  50. Silva Erica Moniz Ferreira da, 2019, Estud. av., V33, P81, DOI 10.1590/s0103-4014.2019.3397.005
  51. Slovic AD, 2019, J TRANSP GEOGR, V78, P181, DOI 10.1016/j.jtrangeo.2019.06.003
  52. Smith K.T., 1996, TREE RINGS ENV HUMAN
  53. Tommasini S, 2000, APPL GEOCHEM, V15, P891, DOI 10.1016/S0883-2927(99)00106-7
  54. Turkyilmaz A, 2018, ENVIRON MONIT ASSESS, V190, DOI 10.1007/s10661-018-6956-0
  55. United Nations Department of Economic and Social Affairs Population Division, 2018, STESASERA417 UN
  56. Van Grieken RE, 2002, HDB XRAY SPECTROMETR
  57. Viel JF, 2011, HEALTH PLACE, V17, P257, DOI 10.1016/j.healthplace.2010.10.007
  58. Wolterbeek HT, 1995, SCI TOTAL ENVIRON, V176, P33, DOI 10.1016/0048-9697(95)04828-6
  59. Zaccarelli-Marino MA, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16183464
  60. Zeileis A., 2002, R NEWS, V2, P7, DOI 10.HTTPS://CRAN.R-PR0JECT.0RG/D0C/RNEWS/
  61. Zheng B, 2018, ATMOS CHEM PHYS, V18, P14095, DOI 10.5194/acp-18-14095-2018
  62. Zwickl K, 2014, ECOL ECON, V107, P494, DOI 10.1016/j.ecolecon.2014.09.013