Acellular Human Amniotic Membrane Scaffold with 15d-PGJ(2) Nanoparticles in Postinfarct Rat Model

Carregando...
Imagem de Miniatura
Citações na Scopus
13
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
MARY ANN LIEBERT, INC
Autores
FRANCISCO, Julio Cesar
UEMURA, Laercio
SIMEONI, Rossana Baggio
CUNHA, Ricardo Correa da
MOGHARBEL, Bassam Felipe
SIMEONI, Paulo Ricardo Baggio
NAVES, Guilherme
NAPIMOGA, Marcelo Henrique
NORONHA, Lucia
CARVALHO, Katherine Athayde Teixeira
Citação
TISSUE ENGINEERING PART A, v.26, n.21-22, p.1128-1137, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background:The difficulty in the regeneration of cardiomyocytes after myocardial infarction is a major cause of heart failure. Together, the amniotic membrane and 15-deoxy-Delta 12,14-prostaglandin J2 (15d-PGJ(2)) can help in the recovery of cardiomyocyte, as they present many growth factors and anti-inflammatory effect, respectively. The objective of this study is to compare the efficacy of Human Decellularized Amniotic Membrane Scaffold (AHAS) loaded with 15d-PGJ(2)in improving ventricular function in a rat model of postinfarct ventricular dysfunction. Methods:Myocardial infarction was induced in 24 rats by left coronary occlusion. After a week, the animals were subjected to echocardiography for evaluation of left ventricle ejection fraction (LVEF), left ventricle end diastolic volume (LVEDV), and left ventricle end systolic volume (LVESV). Animals with ejection fraction <40% were included in the study and were randomized into three groups: control (n = 8), AHAS (n = 8) and AHAS +15d-PGJ(2)(n = 8). In the AHAS group only the membrane was implanted, whereas in the AHAS +15d-PGJ(2)the membrane +15d-PGJ(2)was implanted on myocardial infarction. Echocardiographic evaluation was performed after 1 month. For histological analysis, heart tissue was stained with Gomori trichome, Sirius Red, the antibody against CD31 and connexin 43 (Cx43). Results:There were no significant differences in the baseline LVEF, LVEDV, and LVESV in all groups. After 1 month, ejection fraction decreased in the control group but increased in the AHAS group and in the AHAS +15d-PGJ(2)group in comparison with the control group. The LVEDV and LVESV in the AHAS and AHAS +15d-PGJ(2)groups decreased compared with the control group, featuring a ventricular antiremodeling effect. Histopathology of the infarcted area identified the reduction of infarct size and collagen type 1 in the AHAS and AHAS +15d-PGJ(2)groups. New blood vessels and cardiomyocytes have been identified in an infarcted area by CD31 and Cx43. Conclusion:AHAS +15d-PGJ(2)provided an increase in the ejection fraction and prevented ventricular dilation in this postinfarction ventricular dysfunction model. Impact Statement Our study demonstrated reduction of myocardial fibrosis, proliferation of cardiomyocytes and increase in ejection fraction in rats after experimental acellular amniotic membrane scaffold (AHAS) carrying nanoparticles of 15d-PGJ2 scaffold engraftment in infarcted myocardium. AHAS grafts facilitated colonization of fibrotic myocardium regions with new contractile cells, in addition to preventing reduction of left ventricle wall thickness. This contribution is theoretically and practically relevant as current literature describes experimental studies performed on cardiac ischemic models which present conflicting results concerning cell types used in a research model.
Palavras-chave
PPAR-gamma, 15d-PGJ(2), heart, myocardial infarction, anti-inflammatory
Referências
  1. Bailo M, 2004, TRANSPLANTATION, V78, P1439, DOI 10.1097/01.TP.0000144606.84234.49
  2. Cargnoni A, 2009, CELL TRANSPLANT, V18, P1147, DOI 10.3727/096368909X12483162196764
  3. Carvalho KAT, 2006, TRANSPL P, V38, P1596, DOI 10.1016/j.transproceed.2006.03.023
  4. Denison FC, 1998, HUM REPROD, V13, P3560, DOI 10.1093/humrep/13.12.3560
  5. Fang CH, 2012, CELL TRANSPLANT, V21, P1687, DOI 10.3727/096368912X653039
  6. FESSI H, 1989, INT J PHARM, V55, pR1, DOI 10.1016/0378-5173(89)90281-0
  7. Francisco JC, 2016, TRANSPL P, V48, P2845, DOI 10.1016/j.transproceed.2016.07.026
  8. Gao DF, 2007, BIOCHEM PHARMACOL, V73, P185, DOI 10.1016/j.bcp.2006.09.019
  9. Ramos CMG, 2014, REV BRAS CIR CARDIOV, V29, P202, DOI 10.5935/1678-9741.20140070
  10. Ghostine S, 2002, CIRCULATION, V106, pI131, DOI 10.1161/01.cir.0000032889.55215.f1
  11. Go AS, 2014, CIRCULATION, V129, pE28, DOI [10.1161/CIR.0000000000000152, 10.1161/01.cir.0000441139.02102.80]
  12. Gris O, 2003, TRANSPL P, V35, P2031, DOI 10.1016/S0041-1345(03)00699-7
  13. Guarita-Souza LC, 2006, TRANSPL P, V38, P1953, DOI 10.1016/j.transproceed.2006.06.067
  14. Guarita-Souza LC, 2006, INT J CARDIOL, V111, P423, DOI 10.1016/j.ijcard.2005.08.064
  15. Hennerbichler Simone, 2007, Cell and Tissue Banking, V8, P1, DOI 10.1007/s10561-006-9002-3
  16. Lomivorotov VV, 2017, J CARDIOTHOR VASC AN, V31, P291, DOI 10.1053/j.jvca.2016.05.029
  17. Menasche P, 2003, J AM COLL CARDIOL, V41, P1078, DOI 10.1016/S0735-1097(03)00092-5
  18. Barud HGO, 2015, CARBOHYD POLYM, V128, P41, DOI 10.1016/j.carbpol.2015.04.007
  19. Pan GZ, 2016, CARDIOL RES, V7, P146, DOI 10.14740/cr488w
  20. Riau AK, 2010, BIOMATERIALS, V31, P216, DOI 10.1016/j.biomaterials.2009.09.034
  21. Rodrigues WF, 2010, MEM I OSWALDO CRUZ, V105, P137, DOI 10.1590/S0074-02762010000200005
  22. Roy R, 2016, J SURG RES, V200, P409, DOI 10.1016/j.jss.2015.08.022
  23. Sakamoto A, 2013, INT J CARDIOL, V167, P409, DOI 10.1016/j.ijcard.2012.01.007
  24. Sanluis-Verdes A, 2015, CELL TISSUE BANK, V16, P411, DOI 10.1007/s10561-014-9485-2
  25. Scorsin M, 2000, J THORAC CARDIOV SUR, V119, P1169, DOI 10.1067/mtc.2000.104865
  26. de Melo NFS, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0161796
  27. Wayman NS, 2002, FASEB J, V16, P1027, DOI 10.1096/fj.01-0793com
  28. Wilshaw SP, 2006, TISSUE ENG, V12, P2117, DOI 10.1089/ten.2006.12.2117
  29. Yamamoto K, 2001, CIRCULATION, V104, P1670, DOI 10.1161/hc4001.097186