Antimicrobial peptides in the gut-brain axis: A straightforward review to unravel some missing links

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Citação
JOURNAL OF NEUROSCIENCE RESEARCH, v.98, n.12, p.2384-2389, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Antimicrobial peptides (AMPs) are intriguing molecules, able to directly kill several microorganisms and to regulate multiple aspects of the immune response. Despite the extensive studies on the role of AMPs in the epithelial barrier, placing them as a pivotal line of defense against pathogen invasion, little attention has been directed to their role in the maintenance and modulation of the gut microbiota and, by consequence, of the homeostasis of extra intestinal tissues. Here, we review the recent literature about the microbiome-gut-brain axis, focusing on the role of AMPs in this scenario. We provide a straightforward revision of current data in order to provide an overview of the subject, discussing more in depth some points that, in our opinion, are crucial and have received little attention.
Palavras-chave
antimicrobial peptides, brain, gut, inflammation, innate immunity, microbiome
Referências
  1. Al-Obaidi MMJ, 2018, CELL MOL NEUROBIOL, V38, P1349, DOI 10.1007/s10571-018-0609-2
  2. Browne HP, 2017, NAT REV MICROBIOL, V15, P531, DOI 10.1038/nrmicro.2017.50
  3. Machado MCC, 2016, CURR PHARM DESIGN, V22, P4645, DOI 10.2174/1381612822666160510125331
  4. Chen FD, 2019, CURR OPIN IMMUNOL, V56, P107, DOI 10.1016/j.coi.2018.12.003
  5. Cheng HY, 2019, FRONT IMMUNOL, V10, DOI 10.3389/fimmu.2019.00607
  6. CHRISTENSEN DP, 1992, APPL ENVIRON MICROB, V58, P3312, DOI 10.1128/AEM.58.10.3312-3315.1992
  7. da Silva FP, 2017, IMMUNOL LETT, V182, P57, DOI 10.1016/j.imlet.2017.01.004
  8. da Silva FP, 2013, TISSUE CELL, V45, P318, DOI 10.1016/j.tice.2013.04.003
  9. da Silva FP, 2013, PEPTIDES, V44, P135, DOI 10.1016/j.peptides.2013.03.029
  10. da Silva FP, 2012, PEPTIDES, V36, P308, DOI 10.1016/j.peptides.2012.05.014
  11. da Silva FP, 2009, IMMUNOL CELL BIOL, V87, P496, DOI 10.1038/icb.2009.19
  12. de la Fuente-Nunez C, 2018, ACS CHEM NEUROSCI, V9, P141, DOI 10.1021/acschemneuro.7b00373
  13. de Paula VS, 2018, MOLECULES, V23, DOI 10.3390/molecules23082040
  14. Dicks LMT, 2018, FRONT MICROBIOL, V9, DOI 10.3389/fmicb.2018.02297
  15. Dickson RP, 2016, LANCET RESP MED, V4, P59, DOI 10.1016/S2213-2600(15)00427-0
  16. Fabisiak A, 2016, PHARMACOL REP, V68, P802, DOI 10.1016/j.pharep.2016.03.015
  17. Fulling C, 2019, NEURON, V101, P998, DOI 10.1016/j.neuron.2019.02.008
  18. Garcia-Gutierrez E, 2019, GUT MICROBES, V10, P1, DOI 10.1080/19490976.2018.1455790
  19. Gerard P, 2016, CELL MOL LIFE SCI, V73, P147, DOI 10.1007/s00018-015-2061-5
  20. Hamasaki MY, 2019, INFLAMMATION, V42, P1023, DOI 10.1007/s10753-019-00964-9
  21. Haney EF, 2019, FRONT CHEM, V7, DOI 10.3389/fchem.2019.00043
  22. Iacob S, 2019, FRONT MICROBIOL, V9, DOI 10.3389/fmicb.2018.03328
  23. Jiang WY, 2013, PEPTIDES, V50, P129, DOI 10.1016/j.peptides.2013.10.008
  24. Khlevner J, 2018, GASTROENTEROL CLIN N, V47, P727, DOI 10.1016/j.gtc.2018.07.002
  25. Knip M, 2016, NAT REV ENDOCRINOL, V12, P154, DOI 10.1038/nrendo.2015.218
  26. Kowalski K, 2019, J NEUROGASTROENTEROL, V25, P48, DOI 10.5056/jnm18087
  27. Kumariya R, 2019, MICROB PATHOGENESIS, V128, P171, DOI 10.1016/j.micpath.2019.01.002
  28. McDonald D, 2016, MSPHERE, V1, DOI 10.1128/mSphere.00199-16
  29. Mergaert P, 2018, NAT PROD REP, V35, P336, DOI 10.1039/c7np00056a
  30. Morizane S, 2012, J INVEST DERMATOL, V132, P135, DOI 10.1038/jid.2011.259
  31. Mukhtar K, 2019, WORLD J GASTROENTERO, V25, P552, DOI 10.3748/wjg.v25.i5.552
  32. Munoz M, 2016, J CANCER, V7, P2341, DOI 10.7150/jca.16947
  33. Nizet V, 2001, NATURE, V414, P454, DOI 10.1038/35106587
  34. Nylen F, 2014, INNATE IMMUN-LONDON, V20, P364, DOI 10.1177/1753425913493338
  35. Oami T, 2019, CURR OPIN CRIT CARE, V25, P145, DOI 10.1097/MCC.0000000000000582
  36. Schmidt TSB, 2018, CELL, V172, P1198, DOI 10.1016/j.cell.2018.02.044
  37. Schwabe RF, 2013, NAT REV CANCER, V13, P800, DOI [10.1002/path.5047, 10.1038/nrc3610]
  38. Severance Emily G, 2020, Curr Top Behav Neurosci, V44, P67, DOI 10.1007/7854_2018_84
  39. Severino P, 2017, J MOL MED, V95, P995, DOI 10.1007/s00109-017-1555-z
  40. Shahnawaz M, 2012, J BIOL CHEM, V287, P11665, DOI 10.1074/jbc.M111.282533
  41. SkoniecznaZydecka K., 2018, J CLIN MED, V7, P12
  42. Srikantha P, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20092115
  43. Thursby E, 2017, BIOCHEM J, V474, P1823, DOI 10.1042/BCJ20160510
  44. Tropini C, 2017, CELL HOST MICROBE, V21, P433, DOI 10.1016/j.chom.2017.03.010
  45. Vandamme D, 2012, CELL IMMUNOL, V280, P22, DOI 10.1016/j.cellimm.2012.11.009
  46. Vasilchenko AS, 2019, ARCH MICROBIOL, V201, P147, DOI 10.1007/s00203-018-1610-3
  47. Verjans ET, 2016, PEPTIDES, V85, P16, DOI 10.1016/j.peptides.2016.09.002
  48. Vieira ELM, 2012, J NUTR BIOCHEM, V23, P430, DOI 10.1016/j.jnutbio.2011.01.007
  49. Wang Guangshun, 2012, Curr Biotechnol, V1, P72
  50. Wang YL, 2018, FRONT IMMUNOL, V9, DOI 10.3389/fimmu.2018.02325
  51. Weiss GA, 2017, CELL MOL LIFE SCI, V74, P2959, DOI 10.1007/s00018-017-2509-x
  52. Wlodarska M, 2015, CELL HOST MICROBE, V17, P577, DOI 10.1016/j.chom.2015.04.008
  53. Xhindoli D, 2014, BIOCHEM J, V457, P263, DOI 10.1042/BJ20131048